×

Parallel computing techniques applied to the simultaneous design of structure and material. (English) Zbl 1308.74126

Summary: A computational procedure for two-scale topology optimization problem using parallel computing techniques is developed. The goal is to obtain simultaneously the best structure and material, minimizing structural compliance. An algorithmic strategy is presented in a suitable way for parallelization. In terms of parallel computing facilities, an IBM Cluster 1350 is used comprising 70 computing nodes each with two dual core processors, for a total of 280 cores. Scalability studies are performed with mechanical structures of low/moderate dimensions. Finally the applicability of the proposed methodology is demonstrated solving a grand challenge problem that is the simulation of trabecular bone adaptation.

MSC:

74P10 Optimization of other properties in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)

Software:

ParFE; LAM-MPI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bendsøe, M. P.; Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method, Comput methods appl mech eng 71, No. 2, 197-224 (1988) · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[2] Thomas, H.; Zhou, M.; Schramm, U.: Issues of commercial optimization software development, Struct multidiscip opt 23, 97-110 (2002)
[3] Eschenauer, H. A.; Olhoff, N.: Topology optimization of continuum structures: a review, Appl mech rev 54, No. 4, 331-389 (2001)
[4] Bendsøe, M. P.; Sigmund, O.: Topology optimization theory, methods and applications, (2003) · Zbl 1059.74001
[5] Borrvall, T.; Petersson, J.: Large-scale topology optimization in 3D using parallel computing, Comput methods appl mech eng 190, 6201-6229 (2001) · Zbl 1022.74036 · doi:10.1016/S0045-7825(01)00216-X
[6] Kim, T. S.; Kim, J. E.; Kim, Y. Y.: Parallelized structural topology optimization for eigenvalue problems, Int J solids struct 41, 2623-2641 (2004) · Zbl 1086.74030 · doi:10.1016/j.ijsolstr.2003.11.027
[7] Vemaganti, K.; Lawrence, W. E.: Parallel methods for optimality criteria-based topology optimization, Comput methods appl mech eng 194, 3637-3667 (2005) · Zbl 1176.74145 · doi:10.1016/j.cma.2004.08.008
[8] Mahdavi, A.; Balaji, R.; Frecker, M.; Mockensturm, E. M.: Topology optimization of 2D continua for minimum compliance using parallel computing, Struct multidiscip opt 32, 121-132 (2006)
[9] Wang, S.; Sturler, E.; Paulino, G. H.: Large-scale topology optimization using preconditioned Krylov subspace methods with recycling, Int J numer methods eng 69, 2441-2468 (2007) · Zbl 1194.74265 · doi:10.1002/nme.1798
[10] Evgrafov, A.; Rupp, C. J.; Maute, K.; Dunn, M. L.: Large-scale parallel topology optimization using a dual-primal substructuring solver, Struct multidiscip opt 36, 329-345 (2008) · Zbl 1273.74375
[11] Rodrigues, H. C.; Guedes, J. M.; Bendsøe, M. P.: Hierarchical optimization of material and structure, Struct multidiscip opt 24, 1-10 (2003)
[12] Coelho, P.; Fernandes, P. R.; Guedes, J. M.; Rodrigues, H. C.: A hierarchical model for concurrent material and topology optimization of three-dimensional structures, Struct multidiscip opt 35, 107-115 (2008)
[13] Grama, A.; Gupta, A.; Karypis, G.; Kumar, V.: Introduction to parallel computing, (2003) · Zbl 0861.68040
[14] Coelho, P.; Fernandes, P. R.; Cardoso, J. B.; Guedes, J. M.; Rodrigues, H. C.: Numerical modeling of bone tissue adaptation – a hierarchical approach for bone apparent density and trabecular structure, J biomech 42, 830-837 (2009)
[15] Guedes, J. M.; Kikuchi, N.: Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods, Comput methods appl mech eng 83, 143-198 (1990) · Zbl 0737.73008 · doi:10.1016/0045-7825(90)90148-F
[16] Bendsøe, M. P.; Sigmund, O.: Material interpolation schemes in topology optimization, Arch appl mech 69, No. 9-19, 635-654 (1999) · Zbl 0957.74037 · doi:10.1007/s004190050248
[17] Svanberg, K.: The method of moving asymptotes – a new method for structural optimization, Int J numer methods eng 24, 359-373 (1987) · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[18] Burns G, Daoud R, Vaigl J. LAM: An open cluster environment for MPI. In: Ross JW, editor. Proceedings of supercomputing symposium ’94. University of Toronto; 1994.
[19] Malard J. MPI: a Message Passing Interface standard, history, overview and current status. Technology Watch Report. Edinburgh Parallel Computing Center; 1996.
[20] Forum, Message Passing Interface: MPI: a message passing interface standard, Int J supercomput appl high perform comput 8, No. special issue on MPI (1994) · Zbl 0825.68198
[21] Van Rietbergen, B.; Huiskes, R.: Elastic constants of cancellous bone, Bone mechanics handbook (2001)
[22] Verhulp, E.; Van, Rietbergen; Muller, R.; Huiskes, R.: Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations, J biomech 41, 1479-1485 (2008)
[23] Arbenz, P.; Van Lenthe, G. H.; Mennel, U.; Muller, R.; Sala, M.: A scalable multi-level preconditioner for matrix-free \(\mu \)-finite element analysis of human bone structures, Int J numer methods eng 73, 927-947 (2007) · Zbl 1262.74031
[24] Rietbergen, B. V.; Huiskes, R.; Eckstein, F.; Ruegsegger, P.: Trabecular bone tissue strains in the healthy and osteoporotic human femur, J bone miner res 18, No. 10, 1781-2188 (2003)
[25] Adams MF, Bayraktar HH, Keaveny TM, Papadopoulos P. Applications of algebraic multigrid to large-scale finite element analysis of whole bone micro-mechanics on the IBM SP. In: Proceedings of international conference for high performance computing and communications. Phoenix, November 15 – 21; 2003.
[26] Adams MF, Bayraktar HH, Keaveny TM, Papadopoulos P. Ultrascale implicit finite element analyses in solid mechanics with over a half a billion degrees of freedom. In: Proceedings of high performance computing, networking and storage conference, Pittsburg, PA, November 6 – 12; 2004.
[27] Verhulp, E.; Van Rietbergen, B.; Huiskes, R.: Comparison of micro-level and continuum-level voxel models of the proximal femur, J biomech 39, 2951-2957 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.