×

A novel parallel computing strategy for compact difference schemes with consistent accuracy and dispersion. (English) Zbl 1456.65060

Summary: In this paper, based on the boundary approximation approach for parallelization of the compact difference schemes, a novel strategy for the sub-domain boundary approximation schemes is proposed to maintain consistent accuracy and dispersion with the compact scheme in the interior points. In this strategy, not only the order of accuracy of the sub-domain boundary scheme is the same as the interior scheme, but the coefficient of the first truncation error term is also equal to that of the internal scheme. Furthermore, to realize the consistent dispersion performance for a class of high order upwind compact schemes, which usually include two expressions, we modify the opposite expression to be the sub-domain boundary scheme. As an example of application, the present strategy is applied to a fourth-order upwind compact scheme, and its accuracy is verified by a numerical test. The resolution and efficiency of the newly proposed parallel method are examined by four numerical examples, including propagation of a wave-packet, convection of isentropic vortex, Rayleigh-Taylor instability problems, and propagation of Gauss pulse. The results obtained demonstrate that the present strategy for compact difference schemes has the feasibility to solve the flow problems with high accuracy, resolution and efficiency in parallel computation.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
76N06 Compressible Navier-Stokes equations
35Q31 Euler equations

Software:

HLLE; incompact3d
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lele, SK, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 1, 16-42 (1992) · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[2] Bodony, DJ; Lele, SK, Current status of jet noise predictions using large-eddy simulation, AIAA J., 46, 2, 364-380 (2008) · doi:10.2514/1.24475
[3] Schaupp, C.; Sesterhenn, J.; Friedrich, R., On a method for direct numerical simulation of shear layer/compression wave interaction for aeroacoustic investigations, Comput. Fluids, 37, 4, 463-474 (2008) · Zbl 1237.76108 · doi:10.1016/j.compfluid.2007.02.007
[4] Fu, DX; Ma, YW; Li, XL, Direct numerical simulation of three-dimensional Richtmyer-Meshkov instability, Chin. Phys. Lett., 25, 1, 188-190 (2008) · doi:10.1088/0256-307X/25/1/051
[5] Laizet, S.; Lamballais, E., High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy, J. Comput. Phys., 228, 16, 5989-6015 (2009) · Zbl 1185.76823 · doi:10.1016/j.jcp.2009.05.010
[6] Laizet, S.; Li, N., Incompact3d: a powerful tool to tackle turbulence problems with up to O(105) computational cores, Int. J. Numer. Methods Fluids, 67, 11, 1735-1757 (2011) · Zbl 1419.76481 · doi:10.1002/fld.2480
[7] Tian, ZF; Yu, PX, An efficient compact difference scheme for solving the streamfunction formulation of the incompressible NavierStokes equations, J. Comput. Phys., 230, 17, 6404-6419 (2011) · Zbl 1408.76394 · doi:10.1016/j.jcp.2010.12.031
[8] Oguic, R.; Viazzo, S.; Poncet, S., A parallelized multidomain compact solver for incompressible turbulent flows in cylindrical geometries, J. Comput. Phys., 300, 710-731 (2015) · Zbl 1349.76515 · doi:10.1016/j.jcp.2015.08.003
[9] Yu, PX; Tian, ZF; Zhang, H., A rational high-order compact difference method for the steady-state stream functionvorticity formulation of the NavierStokes equations, Comput. Math. Appl., 73, 7, 1461-1484 (2017) · Zbl 1370.76109 · doi:10.1016/j.camwa.2017.01.024
[10] Yu, PX; Tian, ZF, An upwind compact difference scheme for solving the streamfunction-velocity formulation of the unsteady incompressible Navier-Stokes equation, Comput. Math. Appl., 75, 9, 3224-3243 (2018) · Zbl 1409.76093 · doi:10.1016/j.camwa.2018.01.043
[11] Harten, A.; Lax, PD; Leer, BV, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051 · doi:10.1137/1025002
[12] Fu, DX; Ma, YW; Hafez, M.; Oshima, K., High resolution scheme, Computational Fluid Dynamics Review, 234-250 (1995), New York: Wiley, New York · Zbl 0875.76349
[13] Tolstykh, AI; Lipavskii, MV, On performance of methods with third-and fifth-order compact upwind differencing, J. Comput. Phys., 140, 2, 205-232 (1998) · Zbl 0936.76059 · doi:10.1006/jcph.1998.5887
[14] Ma, YW; Fu, DX; Kobayashi, T.; Taniguchi, N., Numerical solution of the incompressible Navier-Stokes equations with an upwind compact difference scheme, Int. J. Numer. Methods Fluids, 30, 5, 509-521 (1999) · Zbl 0946.76062 · doi:10.1002/(SICI)1097-0363(19990715)30:5<509::AID-FLD851>3.0.CO;2-E
[15] Li, X.L., Ma, Y.W., Fu, D.X.: High efficient method for incompressible N-S equations and analysis of two-dimensional turbulent channel flow. Acta Mechanica Sinica (2001) (in Chinese)
[16] He, ZW; Li, XL; Fu, DX; Ma, YW, A 5th order monotonicity-preserving upwind compact difference scheme, Sci. China (Phys. Mech. Astron.), 54, 3, 511-522 (2011) · doi:10.1007/s11433-010-4220-x
[17] Tam, CK; Webb, JC, Dispersion-relation-preserving finite difference schemes for computational acoustics, J. Comput. Phys., 107, 2, 262-281 (1993) · Zbl 0790.76057 · doi:10.1006/jcph.1993.1142
[18] Tian, ZF; Liang, X.; Yu, PX, A higher order compact finite difference algorithm for solving the incompressible Navier-Stokes equations, Int. J. Numer. Methods Eng., 88, 6, 511-532 (2011) · Zbl 1242.76216 · doi:10.1002/nme.3184
[19] Qin, Q.; Xia, ZA; Tian, ZF, High accuracy numerical investigation of double-diffusive convection in a rectangular enclosure with horizontal temperature and concentration gradients, Int. J. Heat Mass Transf., 71, 405-423 (2014) · doi:10.1016/j.ijheatmasstransfer.2013.12.035
[20] Sun, X., Application and accuracy of the parallel diagonal dominant algorithm, Parallel Comput., 21, 8, 1241-1267 (1995) · Zbl 0873.65016 · doi:10.1016/0167-8191(95)00018-J
[21] Gaitonde, D., Visbal, M.: Further development of a Navier-Stokes solution procedure based on higher-order formulas. In: 37th Aerospace Sciences Meeting and Exhibit 557 (1999)
[22] Povitsky, A.; Morris, PJ, A higher-order compact method in space and time based on parallel implementation of the Thomas algorithm, J. Comput. Phys., 161, 1, 182-203 (2000) · Zbl 0959.65102 · doi:10.1006/jcph.2000.6497
[23] Ladeinde, F.; Cai, X.; Visbal, MR; Gaitonde, D., Parallel implementation of curvilinear high-order formulas, Int. J. Comput. Fluid Dyn., 17, 6, 467-485 (2003) · Zbl 1161.76527 · doi:10.1080/10618560310001615060
[24] Sengupta, TK; Dipankar, A.; Rao, AK, A new compact scheme for parallel computing using domain decomposition, J. Comput. Phys., 220, 2, 654-677 (2007) · Zbl 1370.76072 · doi:10.1016/j.jcp.2006.05.018
[25] Chao, J.; Haselbacher, A.; Balachandar, S., A massively parallel multi-block hybrid compact-WENO scheme for compressible flows, J. Comput. Phys., 228, 19, 7473-7491 (2009) · Zbl 1172.76033 · doi:10.1016/j.jcp.2009.07.005
[26] Kim, JW; Sandberg, RD, Efficient parallel computing with a compact finite difference scheme, Comput. Fluids, 58, 70-87 (2012) · Zbl 1365.65196 · doi:10.1016/j.compfluid.2012.01.004
[27] Kim, JW, Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters, J. Comput. Phys., 241, 168-194 (2013) · Zbl 1349.65738 · doi:10.1016/j.jcp.2013.01.046
[28] Capuano, F., Mastellone, A.: Parallelization of compact finite-volume schemes for turbulent compressible flow. In: Proceedings of 27th International Conference on Parallel Computational Fluid Dynamics, 2015. (2015)
[29] Abide, S.; Binous, MS; Zeghmati, B., An efficient parallel high-order compact scheme for the 3D incompressible Navier-Stokes equations, Int. J. Comput. Fluid Dyn., 31, 4-5, 214-229 (2017) · Zbl 07518029 · doi:10.1080/10618562.2017.1326592
[30] Naik, NH; Naik, VK; Nicoules, M., Parallelization of a class of implicit finite difference schemes in computational fluid dynamics, Int. J. High Speed Comput., 5, 1, 1-50 (1993) · doi:10.1142/S0129053393000025
[31] Terekhov, AV, A highly scalable parallel algorithm for solving Toeplitz tridiagonal systems of linear equations, J. Parallel Distrib. Comput., 87, 102-108 (2016) · doi:10.1016/j.jpdc.2015.10.004
[32] Larsson, J.; Gustafsson, B., Stability criteria for hybrid difference methods, J. Comput. Phys., 227, 5, 2886-2898 (2008) · Zbl 1135.65369 · doi:10.1016/j.jcp.2007.11.025
[33] Povitsky, A.; Wolfshtein, M., Multidomain implicit numerical scheme, Int. J. Numer. Methods Fluids, 25, 5, 547-566 (1997) · Zbl 0910.76049 · doi:10.1002/(SICI)1097-0363(19970915)25:5<547::AID-FLD576>3.0.CO;2-V
[34] Yu, S., Tsai, Y., Hsieh, K.: Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations. In: 28th Joint Propulsion Conference and Exhibit, 19923210 (1992)
[35] Van Leer, B.: Flux-vector splitting for the Euler equations. In: Eighth International Conference on Numerical Methods in Fluid Dynamics, pp. 507-512. Springer, Berlin (1982)
[36] Sharp, DH, An overview of Rayleigh-Taylor instability, Physica D, 12, 1, 3-18 (1984) · Zbl 0577.76047 · doi:10.1016/0167-2789(84)90510-4
[37] Samtaney, R.; Pullin, DI, On initial value and self similar solutions of the compressible Euler equations, Phys. Fluids, 8, 10, 2650-2655 (1996) · Zbl 1027.76642 · doi:10.1063/1.869050
[38] Shi, J.; Zhang, Y.; Shu, C., Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys., 186, 2, 690-696 (2003) · Zbl 1047.76081 · doi:10.1016/S0021-9991(03)00094-9
[39] Waddell, JT; Niederhaus, CE; Jacobs, JW, Experimental study of Rayleigh—Taylor instability: low Atwood number liquid systems with single-mode initial perturbations, Phys. Fluids, 13, 5, 1263-1273 (2001) · Zbl 1184.76579 · doi:10.1063/1.1359762
[40] Tian, ZF, A rational high-order compact ADI method for unsteady convection-diffusion equations, Comput. Phys. Commun., 182, 3, 649-662 (2011) · Zbl 1219.65092 · doi:10.1016/j.cpc.2010.11.013
[41] Carpenter, MH; Gottlieb, D.; Abarbanel, S., Stable and accurate boundary treatments for compact, high-order finite-difference schemes, Appl. Numer. Math., 12, 1-3, 55-87 (1993) · Zbl 0778.65057 · doi:10.1016/0168-9274(93)90112-5
[42] Carpenter, MH; Gottlieb, D.; Abarbanel, S., Time-stable boundary conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes, J. Comput. Phys., 111, 2, 220-236 (1994) · Zbl 0832.65098 · doi:10.1006/jcph.1994.1057
[43] Carpenter, M. H., Kennedy, C. A.: Fourth-order 2N-storage Runge-Kutta schemes Nasa Technical Memorandum, 1-26 (1994)
[44] Kennedy, CA; Carpenter, MH; Lewis, RM, Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math., 35, 3, 177-219 (2000) · Zbl 0986.76060 · doi:10.1016/S0168-9274(99)00141-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.