×

A Newton-Galerkin method for fluid flow exhibiting uncertain periodic dynamics. (English) Zbl 1382.76175

Reprint of [M. Schick et al., SIAM/ASA J. Uncertain. Quantif. 2, 153–173 (2014; Zbl 1311.76071)].

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q30 Navier-Stokes equations
35R60 PDEs with randomness, stochastic partial differential equations
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
76D06 Statistical solutions of Navier-Stokes and related equations
35K55 Nonlinear parabolic equations

Citations:

Zbl 1311.76071

Software:

HiFlow3; FEATFLOW
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Anzt, W. Augustin, M. Baumann, T. Gengenbach, T. Hahn, A. Helfrich-Schkarbanenko, V. Heuveline, E. Ketelaer, D. Lukarski, A. Nestler, S. Ritterbusch, S. Ronnas, M. Schick, M. Schmidtobreick, C. Subramanian, J.-P. Weiss, F. Wilhelm, and M. Wlotzka, {\it Hiflow3: A hardware-aware parallel finite element package}, in Tools for High Performance Computing 2011, H. Brunst, M. S. Müller, W. E. Nagel, and M. M. Resch, eds., Springer, Berlin, Heidelberg, 2012, pp. 139-151.
[2] P. S. Beran, C. L. Pettit, and D. R. Millman, {\it Uncertainty quantification of limit-cycle oscillations}, J. Comput. Phys., 217 (2006), pp. 217-247. · Zbl 1147.76552
[3] B. M. Boghosian, L. M. Fazendeiro, J. Lätt, H. Tang, and P. V. Coveney, {\it New variational principles for locating periodic orbits of differential equations}, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369 (2011), pp. 2211-2218. · Zbl 1223.76070
[4] Y. Duguet, C. C. T. Pringle, and R. R. Kerswell, {\it Relative periodic orbits in transitional pipe flow}, Phys. Fluids, 20 (2008), 114102. · Zbl 1182.76222
[5] S. C. Eisenstat and H. F. Walker, {\it Choosing the forcing terms in an inexact Newton method}, SIAM J. Sci. Comput., 17 (1996), pp. 16-32. · Zbl 0845.65021
[6] C. A. J. Fletcher, {\it Computational Techniques for Fluid Dynamics}, Vol. I, Springer Ser. Comput. Phys., Springer, Berlin, 1988. · Zbl 0706.76001
[7] C. A. J. Fletcher, {\it Computational Techniques for Fluid Dynamics}, Vol. II, Springer Ser. Comput. Phys., Springer, Berlin, 1988. · Zbl 0706.76001
[8] M. Gerritsma, J.-B. van der Steen, P. Vos, and G. E. Karniadakis, {\it Time-dependent generalized polynomial chaos}, J. Comput. Phys., 229 (2010), pp. 8333-8363. · Zbl 1201.65216
[9] R. Ghanem and P. D. Spanos, {\it Stochastic Finite Elements: A Spectral Approach}, Springer-Verlag, New York, 1991. · Zbl 0722.73080
[10] J. L. Guermond, P. Minev, and J. Shen, {\it An overview of projection methods for incompressible flows}, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 6011-6045. · Zbl 1122.76072
[11] V. Heuveline and M. Schick, {\it A hybrid generalized Polynomial Chaos method for stochastic dynamical systems}, Int. J. Uncertain. Quantif., 4 (2014), pp. 37-61. · Zbl 1513.37049
[12] J. G. Heywood, R. Rannacher, and S. Turek, {\it Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations}, Internat. J. Numer. Methods Fluids, 22 (1996), pp. 325-352. · Zbl 0863.76016
[13] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, {\it Optimization with PDE Constraints}, Math. Model. Theory Appl. 23, Springer, New York, 2009. · Zbl 1167.49001
[14] O. M. Knio and O. P. Le Ma\^\itre, {\it Uncertainty propagation in CFD using polynomial chaos decomposition}, Fluid Dynam. Res., 38 (2006), pp. 616-640. · Zbl 1178.76297
[15] O. P. Le Ma\^\itre and O. M. Knio, {\it Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics}, Springer, New York, 2010. · Zbl 1193.76003
[16] O. P. Le Ma\^\itre, O. M. Knio, H. N. Najm, and R. G. Ghanem, {\it A stochastic projection method for fluid flow. I. Basic formulation}, J. Comput. Phys., 173 (2001), pp. 481-511. · Zbl 1051.76056
[17] O. P. Le Ma\^\itre, O. M. Knio, H. N. Najm, and R. G. Ghanem, {\it Uncertainty propagation using Wiener-Haar expansions}, J. Comput. Phys., 197 (2004), pp. 28-57. · Zbl 1052.65114
[18] O. P. Le Ma\^\itre, L. Mathelin, O. M. Knio, and M. Y. Hussaini, {\it Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics}, Discrete Contin. Dyn. Syst., 28 (2010), pp. 199-226. · Zbl 1198.37072
[19] O. P. Le Ma\^\itre, H. N. Najm, R. G. Ghanem, and O. M. Knio, {\it Multi-resolution analysis of Wiener-type uncertainty propagation schemes}, J. Comput. Phys., 197 (2004), pp. 502-531. · Zbl 1056.65006
[20] O. P. Le Ma\^\itre, M. T. Reagan, H. N. Najm, R. G. Ghanem, and O. M. Knio, {\it A stochastic projection method for fluid flow. II. Random process}, J. Comput. Phys., 181 (2002), pp. 9-44. · Zbl 1052.76057
[21] O. P. Le Ma\^\itre, M. T. Reagan, B. J. Debusschere, H. N. Najm, R. G. Ghanem, and O. M. Knio, {\it Natural convection in a closed cavity under stochastic non-Boussinesq conditions}, SIAM J. Sci. Comput., 26 (2004), pp. 375-394. · Zbl 1075.60077
[22] H. N. Najm, {\it Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics}, Annu. Rev. Fluid Mech., 41 (2009), pp. 35-52. · Zbl 1168.76041
[23] C. E. Powell and D. J. Silvester, {\it Preconditioning steady-state Navier-Stokes equations with random data}, SIAM J. Sci. Comput., 34 (2012), pp. A2482-A2506. · Zbl 1256.35216
[24] C. E. Powell and E. Ullmann, {\it Preconditioning stochastic Galerkin saddle point systems}, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2813-2840. · Zbl 1216.65010
[25] A. Quarteroni and A. Valli, {\it Numerical Approximation of Partial Differential Equations}, Springer Ser. Comput. Math. 23, Springer, Berlin, 1994. · Zbl 0803.65088
[26] Y. Saad and M. H. Schultz, {\it GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems}, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869. · Zbl 0599.65018
[27] T. P. Sapsis and P. F. J. Lermusiaux, {\it Dynamically orthogonal field equations for continuous stochastic dynamical systems}, Phys. D, 238 (2009), pp. 2347-2360. · Zbl 1180.37119
[28] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher, {\it Benchmark computations of laminar flow around a cylinder}, in Flow Simulation with High-Performance Computers II, Notes Numer. Fluid Mech. 48, Springer, Berlin, 1996, pp. 547-566. · Zbl 0874.76070
[29] M. Schick, {\it Parareal time-stepping for limit-cycle computation of the incompressible Navier-Stokes equations with uncertain periodic dynamics}, in Multiple Shooting and Time Domain Decomposition Methods, Contrib. Math. Comput. Sci. 9, Springer International Publishing, 2015, pp. 401-422. · Zbl 1382.76176
[30] R. Temam, {\it Navier-Stokes Equations: Theory and Numerical Analysis}, AMS Chelsea, Providence, RI, 2001. · Zbl 0981.35001
[31] S. Turek, {\it Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Computational Approach}, Lect. Notes Comput. Sci. Eng. 6, Springer, Berlin, 1999. · Zbl 0930.76002
[32] X. Wan and G. E. Karniadakis, {\it Multi-element generalized polynomial chaos for arbitrary probability measures}, SIAM J. Sci. Comput., 28 (2006), pp. 901-928. · Zbl 1128.65009
[33] N. Wiener, {\it The homogeneous chaos}, Amer. J. Math., 60 (1938), pp. 897-936. · JFM 64.0887.02
[34] D. Xiu and G. E. Karniadakis, {\it The Wiener-Askey polynomial chaos for stochastic differential equations}, SIAM J. Sci. Comput., 24 (2002), pp. 619-644. · Zbl 1014.65004
[35] E. Zeidler, {\it Applied Functional Analysis: Applications to Mathematical Physics}, Appl. Math. Sci. 108, Springer, New York, 1999. · Zbl 0834.46002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.