×

Dark matter in a twisted bottle. (English) Zbl 1342.83514


MSC:

83F05 Relativistic cosmology
83C57 Black holes
81T45 Topological field theories in quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE]. · doi:10.1016/S0550-3213(02)01012-X
[2] G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, A Dark matter candidate from Lorentz invariance in 6D, JHEP03 (2010) 083 [arXiv:0907.4993] [INSPIRE]. · Zbl 1271.83083 · doi:10.1007/JHEP03(2010)083
[3] P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE]. · doi:10.1016/0550-3213(91)90438-4
[4] J. Edsjö and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].
[5] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Program for calculating the relic density in the MSSM, Comput. Phys. Commun.149 (2002) 103 [hep-ph/0112278] [INSPIRE]. · Zbl 1196.81048 · doi:10.1016/S0010-4655(02)00596-9
[6] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: Version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [INSPIRE]. · Zbl 1196.81049 · doi:10.1016/j.cpc.2005.12.005
[7] WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE]. · doi:10.1088/0067-0049/192/2/18
[8] M. Kamionkowski and M.S. Turner, Thermal relics: do we know their abundances?, Phys. Rev. D 42 (1990) 3310 [INSPIRE].
[9] P. Salati, Quintessence and the relic density of neutralinos, Phys. Lett.B 571 (2003) 121 [astro-ph/0207396] [INSPIRE].
[10] S. Profumo and P. Ullio, SUSY dark matter and quintessence, JCAP11 (2003) 006 [hep-ph/0309220] [INSPIRE]. · doi:10.1088/1475-7516/2003/11/006
[11] D.J. Chung, L.L. Everett, K. Kong and K.T. Matchev, Connecting LHC, ILC and Quintessence, JHEP10 (2007) 016 [arXiv:0706.2375] [INSPIRE]. · doi:10.1088/1126-6708/2007/10/016
[12] A. Arbey and F. Mahmoudi, SUSY constraints from relic density: High sensitivity to pre-BBN expansion rate, Phys. Lett. B 669 (2008) 46 [arXiv:0803.0741] [INSPIRE].
[13] T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE]. · doi:10.1016/S0550-3213(99)00748-8
[14] G.F. Giudice, E.W. Kolb and A. Riotto, Largest temperature of the radiation era and its cosmological implications, Phys. Rev. D 64 (2001) 023508 [hep-ph/0005123] [INSPIRE].
[15] N. Fornengo, A. Riotto and S. Scopel, Supersymmetric dark matter and the reheating temperature of the universe, Phys. Rev. D 67 (2003) 023514 [hep-ph/0208072] [INSPIRE].
[16] G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].
[17] A. Arbey and F. Mahmoudi, SUSY constraints, relic density and very early Universe, JHEP05 (2010) 051 [arXiv:0906.0368] [INSPIRE]. · Zbl 1287.83047 · doi:10.1007/JHEP05(2010)051
[18] A. Arbey and F. Mahmoudi, SuperIso Relic: A Program for calculating relic density and flavor physics observables in Supersymmetry, Comput. Phys. Commun.181 (2010) 1277 [arXiv:0906.0369] [INSPIRE]. · Zbl 1219.81253 · doi:10.1016/j.cpc.2010.03.010
[19] A. Arbey and F. Mahmoudi, SuperIso Relic v3.0: A program for calculating relic density and flavour physics observables: Extension to NMSSM, Comput. Phys. Commun. 182 (2011) 1582 [INSPIRE]. · doi:10.1016/j.cpc.2011.03.019
[20] A. Arbey, AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies, Comput. Phys. Commun. 183 (2012) 1822 [arXiv:1106.1363] [INSPIRE]. · doi:10.1016/j.cpc.2012.03.018
[21] H. Dohi and K.-y. Oda, Universal extra dimensions on real projective plane, Phys. Lett. B 692 (2010) 114 [arXiv:1004.3722] [INSPIRE].
[22] G. Cacciapaglia and B. Kubik, Even tiers and resonances on the Real Projective Plane, arXiv:1209.6556 [INSPIRE]. · Zbl 1342.81558
[23] G. Cacciapaglia, A. Deandrea and J. Llodra-Perez, The Universal Real Projective Plane: LHC phenomenology at one Loop, JHEP10 (2011) 146 [arXiv:1104.3800] [INSPIRE]. · Zbl 1303.81105 · doi:10.1007/JHEP10(2011)146
[24] B.A. Dobrescu and E. Ponton, Chiral compactification on a square, JHEP03 (2004) 071 [hep-th/0401032] [INSPIRE]. · doi:10.1088/1126-6708/2004/03/071
[25] G. Burdman, B.A. Dobrescu and E. Ponton, Six-dimensional gauge theory on the chiral square, JHEP02 (2006) 033 [hep-ph/0506334] [INSPIRE]. · doi:10.1088/1126-6708/2006/02/033
[26] M. Kakizaki, S. Matsumoto, Y. Sato and M. Senami, Relic abundance of LKP dark matter in UED model including effects of second KK resonances, Nucl. Phys.B 735 (2006) 84 [hep-ph/0508283] [INSPIRE]. · Zbl 1109.83324 · doi:10.1016/j.nuclphysb.2005.11.022
[27] T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].
[28] M. Kakizaki, S. Matsumoto and M. Senami, Relic abundance of dark matter in the minimal universal extra dimension model, Phys. Rev. D 74 (2006) 023504 [hep-ph/0605280] [INSPIRE].
[29] N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE]. · doi:10.1016/j.cpc.2009.02.018
[30] A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].
[31] G. Bélanger, M. Kakizaki and A. Pukhov, Dark matter in UED: the role of the second KK level, JCAP02 (2011) 009 [arXiv:1012.2577] [INSPIRE]. · doi:10.1088/1475-7516/2011/02/009
[32] D.Y. Akimov et al., WIMP-nucleon cross-section results from the second science run of ZEPLIN-III, Phys. Lett. B 709 (2012) 14 [arXiv:1110.4769] [INSPIRE].
[33] CDMS and EDELWEISS collaborations, Z. Ahmed et al., Combined Limits on WIMPs from the CDMS and EDELWEISS Experiments, Phys. Rev.D 84 (2011) 011102 [arXiv:1105.3377] [INSPIRE].
[34] XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE]. · doi:10.1103/PhysRevLett.107.131302
[35] XENON100 collaboration, E. Aprile et al., The XENON100 Dark Matter Experiment, Astropart. Phys. 35 (2012) 573 [arXiv:1107.2155] [INSPIRE]. · doi:10.1016/j.astropartphys.2012.01.003
[36] K. Nishiwaki, K.-y. Oda, N. Okuda and R. Watanabe, A Bound on Universal Extra Dimension Models from up to 2 fb−1of LHC Data at 7 TeV, Phys. Lett.B 707 (2012) 506 [arXiv:1108.1764] [INSPIRE].
[37] T. Kakuda, K. Nishiwaki, K.-y. Oda, N. Okuda and R. Watanabe, Higgs at ILC in Universal Extra Dimensions in Light of Recent LHC Data, arXiv:1202.6231 [INSPIRE].
[38] B.A. Dobrescu, D. Hooper, K. Kong and R. Mahbubani, Spinless photon dark matter from two universal extra dimensions, JCAP10 (2007) 012 [arXiv:0706.3409] [INSPIRE]. · doi:10.1088/1475-7516/2007/10/012
[39] K. Kong and K.T. Matchev, Precise calculation of the relic density of Kaluza-Klein dark matter in universal extra dimensions, JHEP01 (2006) 038 [hep-ph/0509119] [INSPIRE]. · doi:10.1088/1126-6708/2006/01/038
[40] F. Burnell and G.D. Kribs, The abundance of Kaluza-Klein dark matter with coannihilation, Phys. Rev. D 73 (2006) 015001 [hep-ph/0509118] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.