×

Multi-criteria decision analysis for efficient location-allocation problem combining DEA and goal programming. (English) Zbl 1327.90282

Summary: Facility location-allocation (FLA) decisions play a significant role in the performance of supply network in many practical applications, such as emergency service system, supply chain system, public service system, etc. In this paper, a multi-criteria model (including multi-attribute and multi-objective) for optimal and efficient facility location-allocation patterns was proposed. We first utilize multi attribute decision making (MADM) method – DEA to evaluate the relative efficiency of each potential location, and then combine the efficiency identified from DEA as a goal in a multi objective decision making (MODM) framework by using goal programming. A hypothetical example is presented to illustrate the effectiveness and the efficiency of the proposed model. Results demonstrate that the proposed multi-criteria model is an effective tool for generating a set of more realistic and flexible optimal solution in solving facility location- allocation problems by adjusting the goal priorities with respect to the importance of each objective and the aspiration level with respect to desired target values. The proposed model is also flexible and general enough to consider other specific location decisions such as emergency facilities, undesirable facilities and supply chain design by combing specific location modeling goal with the DEA model.

MSC:

90C29 Multi-objective and goal programming

Software:

MADM
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] O.I. Alsalloum and G.K. Rand, Extensions to emergency vehicle location models. Comput. Oper. Res.33 (2006) 2725-2743. · Zbl 1086.90034 · doi:10.1016/j.cor.2005.02.025
[2] A. Ancarani, C. Di Mauro and M.D. Giammanco, The impact of managerial and organizational aspects on hospital wards’ efficiency: Evidence from a case study. Eur. J. Oper. Res.194 (2009) 280-293. · Zbl 1158.90377 · doi:10.1016/j.ejor.2007.11.046
[3] C. Araz, H. Selim and I. Ozkarahan, A fuzzy multi-objective covering-based vehicle location model for emergency services. Comput. Oper. Res.34 (2007) 705-726. · Zbl 1120.90352 · doi:10.1016/j.cor.2005.03.021
[4] A. Azadeh, S.F. Ghaderi and A. Maghsoudi, Location optimization of solar plants by an integrated hierarchical DEA PCA approach. Energy Policy36 (2008) 3993-4004. · doi:10.1016/j.enpol.2008.05.034
[5] M. Badri, Combining the analytic hierarchy process and goal programming for global facility location-allocation problem. Int. J. Prod. Econ.62 (1999) 237-248. · doi:10.1016/S0925-5273(98)00249-7
[6] M.A. Badri, A.K. Mortagy and C.A. Alsayed, A multi-objective model for locating fire stations. Eur. J. Oper. Res.110 (1998) 243-260. · Zbl 0948.90094 · doi:10.1016/S0377-2217(97)00247-6
[7] J.T. Blake and M.W. Carter, A goal programming approach to strategic resource allocation in acute care hospitals. Eur. J. Oper. Res.140 (2002) 541-561. · Zbl 0998.90520 · doi:10.1016/S0377-2217(01)00219-3
[8] A. Charnes and W.W. Cooper, Management models and industrial applications of linear programming. Wiley, New York (1961). · Zbl 0107.37004
[9] A. Charnes, W.W. Cooper and E. Rhodes, Measuring efficiency of decision making units. Eur. J. Oper. Res.2 (1978) 429-444. · Zbl 0416.90080 · doi:10.1016/0377-2217(78)90138-8
[10] A. Charnes and J. Storbeck, A goal programming model for siting multi-level EMS Systems. Socio-Economic Planning Sci.14 (1980) 155-161. · doi:10.1016/0038-0121(80)90029-4
[11] L.H. Chen and M.C. Weng, An evaluation approach to engineering design in QFD processes using fuzzy goal programming models. Eur. J. Oper. Res.172 (2006) 230-248. · Zbl 1116.90067 · doi:10.1016/j.ejor.2004.10.004
[12] L. Cooper, Location-allocation problems. Oper. Res.11 (1963) 331-344. · Zbl 0113.14201 · doi:10.1287/opre.11.3.331
[13] J. Current, H. Min and D. Schilling, Multi-objective analysis of facility location decisions. Eur. J. Oper. Res.49 (1990) 295-307. · Zbl 0717.90042 · doi:10.1016/0377-2217(90)90401-V
[14] T. Drezner, Z. Drezner and S. Salhi, A multi-objective heuristic approach for the casualty collection points location problem. J. Oper. Res. Soc.57 (2006) 727-734. · Zbl 1151.90585 · doi:10.1057/palgrave.jors.2602047
[15] E. Erkut, A. Karagiannidis, G. Perkoulidis and S.A. Tjandra, A multicriteria facility location model for municipal solid waste management in North Greece. Eur. J. Oper. Res.187 (2008) 1402-1421. · Zbl 1137.90605 · doi:10.1016/j.ejor.2006.09.021
[16] G. Fandel, On the performance of universities in North Rhine-Westphalia, Germany: Government’s redistribution of funds judged using DEA efficiency measures. Eur. J. Oper. Res.176 (2007) 521-533. · Zbl 1137.90465 · doi:10.1016/j.ejor.2005.06.043
[17] I. Giannikos, A multi-objective programming model for locating treatment sites and routing hazardous wastes. Eur. J. Oper. Res.104 (1998) 333-342. · Zbl 0955.90120 · doi:10.1016/S0377-2217(97)00188-4
[18] S.L. Hakimi, Optimum locations of switching centers and absolute centers and medians of a graph. Oper. Res.12 (1964) 450-459. · Zbl 0123.00305 · doi:10.1287/opre.12.3.450
[19] S.L. Hakimi, Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res.13 (1965) 462-475. · Zbl 0135.20501 · doi:10.1287/opre.13.3.462
[20] C. Kao and S.T. Liu, Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks. Eur. J. Oper. Res.196 (2009) 312-322. · Zbl 1161.62071 · doi:10.1016/j.ejor.2008.02.023
[21] T.H. Keh and S. Chu, Retail productivity and scale economies at the firm level: a DEA approach. Omega31 (2003) 75-82. · doi:10.1016/S0305-0483(02)00097-X
[22] R.K. Klimberg and S.J. Ratick, Modeling data envelopment analysis efficient location/allocation decisions. Comput. Oper. Res.35 (2008) 457-474. · Zbl 1141.90468 · doi:10.1016/j.cor.2006.03.010
[23] B. Kraiwinee, D.H. Eugene and P.D. Jonathan, Multinational investment and host country development: Location efficiencies for services offshoring. J. World Business43 (2008) 227-242. · doi:10.1016/j.jwb.2007.11.001
[24] N.K. Kwak, M.J. Schnierderjans and K.S. Warkentin, An application of linear goal programming to the marketing distribution. Eur. J. Oper. Res.52 (1991) 334-344. · doi:10.1016/0377-2217(91)90168-U
[25] S.M. Lee, G.I. Greens and C.S. Kim, A multiple criteria model for the location-allocation problem. Comput. Oper. Res.5 (1981) 1-8. · doi:10.1016/0305-0548(81)90026-5
[26] M. Mathirajan and R. Ramanathan, A (0-1) goal programming model for scheduling the tour of a marketing executive. Eur. J. Oper. Res.179 (2007) 554-566. · Zbl 1128.90500 · doi:10.1016/j.ejor.2006.03.025
[27] W. Meilin and K. Iwamura, Fuzzy facility location-allocation problem under the Hurwicz criterion. Eur. J. Oper. Res.184 (2008) 627-635. · Zbl 1149.90366 · doi:10.1016/j.ejor.2006.11.029
[28] H.M. Melachrinoudis and A. Messac, The relocation of a manufacturing/distribution facility from supply chain perspectives A physical programming approach. JAI Press, Amsterdam (2000), Vol. 10, pp. 15-39.
[29] R. Narasimhana, S. Talluria, J. Sarkisb and A. Ross, Efficient service location design in government services: a decision support system framework. J. Oper. Manag.23 (2005) 163-178 · doi:10.1016/j.jom.2004.07.004
[30] J.P. Oddoye, D.F. Jones, M. Tamiz and P. Schmidt, Combining simulation and goal programming for healthcare planning in a medical assessment unit. Eur. J. Oper. Res.193 (2009) 250-261. · Zbl 1152.90679 · doi:10.1016/j.ejor.2007.10.029
[31] G. Peijun, Fuzzy data envelopment analysis and its application to location problems. Inform. Sci.179 (2009) 820-829. · Zbl 1156.90467 · doi:10.1016/j.ins.2008.11.003
[32] D. Reynolds and G.M. Thompson, Multiunit restaurant productivity assessment using three-phase data envelopment analysis. Int. J. Hospitality Manag.26 (2007) 20-32. · doi:10.1016/j.ijhm.2005.08.004
[33] M.C. Sadok, C. Habib and A. Belaïd, Quality control system design through the goal programming model and the satisfaction functions. Eur. J. Oper. Res.186 (2008) 1084-1098. · Zbl 1168.90605 · doi:10.1016/j.ejor.2007.04.025
[34] C.K. Sydney and C. Lisa, A modeling framework for hospital location and service allocation. Int. Trans. Oper. Res.7 (2000) 539-568. · doi:10.1111/j.1475-3995.2000.tb00216.x
[35] H.E. Shroff, T.R. Gulledge and K.E. Haynes, Siting efficiency of long-term health care facilities. Socio-Economic Planning Sciences32 (1998) 25-43. · doi:10.1016/S0038-0121(97)00016-5
[36] P. Thomas, Y. Chan, L. Lehmkuhl and W. Nixon, Obnoxious-facility location and data envelopment analysis: a combined distance- based formulation. Eur. J. Oper. Res.141 (2002) 495-514. · Zbl 1081.90579 · doi:10.1016/S0377-2217(01)00266-1
[37] F.M. Tseng, Y.J. Chiu and J.S. Chen, Measuring business performance in the high-tech manufacturing industry: A case study of Taiwan’s large-sized TFT-LCD panel companies. Omega37 (2009) 686-697. · doi:10.1016/j.omega.2007.07.004
[38] L.L. Yang, B.F. Jones and S.H. Yang, A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms. Eur. J. Oper. Res.181 (2007) 903-915. · Zbl 1131.90409 · doi:10.1016/j.ejor.2006.07.003
[39] K. Yoon and C.L. Hwang, Multiple attribute decision making: an introduction. Sage Publications, USA (1995).
[40] O. Yoshiaki and T. Kazuki, Efficient location for a semi-obnoxious facility. Ann. Oper. Res.123 (2003) 173-18. · Zbl 1039.90035 · doi:10.1023/A:1026127430341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.