×

A new fully coupled method for computing turbulent flows. (English) Zbl 1058.76042

From the summary: This work discusses the computation of steady turbulent two-dimensional incompressible viscous flows on structured cell-centered collocated grids. A rather new computational approach – the so-called fully coupled procedure with defect correction technique – is presented as an alternative both to classical decoupled approaches SIMPLE, PISO and variants, and to weakly coupled solution methods of Vanka type. Its main features are highlighted and detailed. This strategy is evaluated on two test cases: the simulation of separated flow past AS240-B airfoil at high incidence \((19^\circ,\text{Re}=2\times 10^6)\), and the simulation of wake flow behind a two-dimensional hill (Re=60000)), for which documented experimental data are available. Both robustness and computational efficiency of the new approach are shown.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76F10 Shear flows and turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Almeida, G. P.; Durao, D. F.G.; Heitor, M. V., Wake flows behind two-dimensional model hills, Exp Thermal Fluid Sci, 7, 87 (1993)
[2] Almeida GP, Durao DFG, Heitor MV, Simoes JP. LDV measurements of fully-developed turbulent channel flow. Proc Fifth Int Symp Appl Laser Tech Fluid Mech, Lisbon, 1990. p. 9-12; Almeida GP, Durao DFG, Heitor MV, Simoes JP. LDV measurements of fully-developed turbulent channel flow. Proc Fifth Int Symp Appl Laser Tech Fluid Mech, Lisbon, 1990. p. 9-12
[3] Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, van der Vorst H. Templates for the solution of linear systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994; Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, van der Vorst H. Templates for the solution of linear systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994 · Zbl 0814.65030
[4] Brandt, A., Multi-level adaptive solutions for boundary value problems, Math Comput, 31, 333-390 (1977) · Zbl 0373.65054
[5] Brown, P.; Saad, Y., Convergence theory of nonlinear Newton-Krylov algorithms, SIAM J Optim, 4, 297-330 (1994) · Zbl 0814.65048
[6] Chan, T. F.; Gallopoulos, E.; Simoncini, V.; Szeto, T.; Tong, C. H., A quasi-minimal residual variant of the BICGSTAB algorithm for nonsymmetric systems, SIAM J Sci Stat Comput, 15, 338-347 (1994) · Zbl 0803.65038
[7] Clift, S. S.; Forsyth, P. A., Linear and non-linear iterative methods for the incompressible Navier-Stokes equations, Int J Numer Meth Fluids, 18, 229-256 (1994) · Zbl 0791.76061
[8] Kevin Cope Wm, Vanka SP, Wang G. Multigrid calculations of twin jet impingement with crossflow: comparison of segregated and coupled relaxation strategies. ASME Fluids Engineering Summer Annual Meeting, Lake Tahoe, NV, June 19-23, 1994; Kevin Cope Wm, Vanka SP, Wang G. Multigrid calculations of twin jet impingement with crossflow: comparison of segregated and coupled relaxation strategies. ASME Fluids Engineering Summer Annual Meeting, Lake Tahoe, NV, June 19-23, 1994
[9] Deng, G. B.; Ferry, M.; Piquet, J.; Visonneau, M., New fully coupled solutions of the Navier-Stokes equations, Notes Numer Fluid Mech, 35, 191-200 (1991) · Zbl 0800.76301
[10] Deng, G. B.; Piquet, J.; Queutey, P.; Visonneau, M., Incompressible flow calculations with a consistent physical interpolation using the CPI method, Comput Fluids, 23, 8, 1020-1047 (1994) · Zbl 0816.76066
[11] Deng, G. B.; Piquet, J.; Queutey, P.; Visonneau, M., A new fully coupled solution of the Navier-Stokes equations, Int J Numer Meth Fluids, 19, 605-639 (1994) · Zbl 0815.76054
[12] Deng GB, Piquet J, Queutey P, Visonneau M. Navier-Stokes equations for incompressible flows: finite-difference and finite volume methods. In Peyret R, editor. Handbook of Computational Fluid Mech, New York: Academic Press; 1996, p. 25-97; Deng GB, Piquet J, Queutey P, Visonneau M. Navier-Stokes equations for incompressible flows: finite-difference and finite volume methods. In Peyret R, editor. Handbook of Computational Fluid Mech, New York: Academic Press; 1996, p. 25-97 · Zbl 1107.76368
[13] Deng GB, Piquet J, Visonneau M. Viscous flow computations using a fully coupled technique. Proc. Second International Colloquium on viscous fluid dynamics in ship and ocean technology, Osaka, 1991, p. 186-202; Deng GB, Piquet J, Visonneau M. Viscous flow computations using a fully coupled technique. Proc. Second International Colloquium on viscous fluid dynamics in ship and ocean technology, Osaka, 1991, p. 186-202
[14] Devine KD, Hennigan GL, Hutchinson SA, Salinger AG, Shadid JN, Tuminaro RS. High performance MP unstructured finite element simulation of chemically reacting flows. Conference on SuperComputing , SC’97, San Jose, Nov 15-21 1997; Devine KD, Hennigan GL, Hutchinson SA, Salinger AG, Shadid JN, Tuminaro RS. High performance MP unstructured finite element simulation of chemically reacting flows. Conference on SuperComputing , SC’97, San Jose, Nov 15-21 1997
[15] Dick, E.; Linden, J., A multigrid method for steady incompressible Navier-Stokes equations based on flux difference splitting, Int J Numer Meth Fluids, 14, 1311-1323 (1992) · Zbl 0768.76033
[16] Gleyzes C. Opération décrochage – résultats d’essais á la soufflerie F2. Technical Report OA 71/2259 AYD (DERAT 55/5004-22), ONERA-DERAT, 1988; Gleyzes C. Opération décrochage – résultats d’essais á la soufflerie F2. Technical Report OA 71/2259 AYD (DERAT 55/5004-22), ONERA-DERAT, 1988
[17] Guilmineau, E.; Piquet, J.; Queutey, P., Two-dimensional turbulent viscous flow simulation past airfoils at fixed incidence, Comput Fluids, 26, 135-162 (1997) · Zbl 0893.76055
[18] Hackbusch W. Multigrid methods and applications. Springer-Verlag 1985; Hackbusch W. Multigrid methods and applications. Springer-Verlag 1985 · Zbl 0595.65106
[19] Hanby, R. F.; Silvester, D. J.; Chew, J. W., A comparison of coupled and segregated iterative solution techniques for incompressible swirling flow, Int J Numer Meth Fluids, 22, 353-373 (1996) · Zbl 0863.76044
[20] Hutchinson SA, Shadid J, Tuminaro R. Aztec user’s guide. Technical Report SAND95-1559, Sandia National Laboratory, 1995; Hutchinson SA, Shadid J, Tuminaro R. Aztec user’s guide. Technical Report SAND95-1559, Sandia National Laboratory, 1995
[21] Issa, R., Solution of the implicitly discretized fluid flows equations by operator-splitting, J Comput Phys, 62, 1, 40-65 (1986) · Zbl 0619.76024
[22] Karki, K. C.; Mongia, H. C., Evaluation of a coupled solution approach for fluid flow calculations in body-fitted coordinates, Int J Numer Meth Fluids, 11, 1-20 (1990)
[23] Knoll, D.; MacHugh, P., Enhanced non-linear iterative techniques applied to a non-equilibrium plasma flow, SIAM J Sci Comput, 19, 1, 291-301 (1998) · Zbl 0913.76067
[24] Van, B., Upwind-difference methods for aerodynamic problems governed by the Euler equations, Lect Appl Math, 22, 327-336 (1985)
[25] Leonard, B. P., A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput Meth Appl Mech Engng, 19, 59-98 (1979) · Zbl 0423.76070
[26] MacHugh, P.; Knoll, D., Fully coupled finite volume solutions of the incompressible Navier-Stokes and energy equations using an inexact Newton method, Int J Numer Meth Fluids, 19, 439-455 (1994) · Zbl 0814.76071
[27] Menter FR. Zonal two-equations \(kω\); Menter FR. Zonal two-equations \(kω\)
[28] Oosterlee CW. Robust multigrid methods for the steady and unsteady Navier-Stokes equations in general coordinates. PhD Thesis, University of Technology, Department of Mathematics and Informatics, Delft, 1993; Oosterlee CW. Robust multigrid methods for the steady and unsteady Navier-Stokes equations in general coordinates. PhD Thesis, University of Technology, Department of Mathematics and Informatics, Delft, 1993
[29] Oosterlee, C. W.; Gaspar, F.; Washio, T.; Wienands, R., Multigrid line smoothers for higher order upwind discretizations of convection-dominated problems, J Comput Phys, 139, 2, 274-307 (1998) · Zbl 0908.65111
[30] Patankar S. Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, 1980; Patankar S. Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, 1980 · Zbl 0521.76003
[31] Patankar, S.; Spalding, D., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int J Heat Mass Transfer, 15, 1787-1806 (1972) · Zbl 0246.76080
[32] Pernice, M.; Walker, H., NITSOL: a Newton iterative solver for nonlinear systems, SIAM J Sci Comput, 19, 1, 302-318 (1998) · Zbl 0916.65049
[33] Rhie, C.; Chow, W., A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J, 21, 1525-1532 (1983) · Zbl 0528.76044
[34] Rodi W, Bonnin JC, Buchal T. ERCOFTAC workshop on data bases and testing of calculation methods for turbulent flows. In Proc. Fourth ERCOFTAC-IAHR Workshop on Refined Flow Modelling, Karlsruhe, Germany, 1995; Rodi W, Bonnin JC, Buchal T. ERCOFTAC workshop on data bases and testing of calculation methods for turbulent flows. In Proc. Fourth ERCOFTAC-IAHR Workshop on Refined Flow Modelling, Karlsruhe, Germany, 1995
[35] Ruge J, Stüben K. Algebraic multigrid. In S.Mc Cormick, editor. Multigrid Methods, SIAM Philadelphia, 1987, p. 73-130; Ruge J, Stüben K. Algebraic multigrid. In S.Mc Cormick, editor. Multigrid Methods, SIAM Philadelphia, 1987, p. 73-130
[36] Saad, Y.; Schultz, M., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J Sci Stat Comput, 7, 856-869 (1986) · Zbl 0599.65018
[37] Schmid M, Deng GB, Seidl V, Visonneau M, Peric M. Computation of complex turbulent flows. In: E.H. Hirschel, editor. Numerical flow simulation I, Notes on numerical fluid mechanics, Vol. 66. Braunschweig: Vieweg-Verlag, 1998, p. 407-25; Schmid M, Deng GB, Seidl V, Visonneau M, Peric M. Computation of complex turbulent flows. In: E.H. Hirschel, editor. Numerical flow simulation I, Notes on numerical fluid mechanics, Vol. 66. Braunschweig: Vieweg-Verlag, 1998, p. 407-25
[38] Schneider GE, Zedan M. A coupled modified strongly implicit procedure for the numerical solution of coupled continuum problems. Proc. AIAA/SAE/ASME 20th Joint Propulsion Conference, AIAA-84-1743, Cincinnati, 1984; Schneider GE, Zedan M. A coupled modified strongly implicit procedure for the numerical solution of coupled continuum problems. Proc. AIAA/SAE/ASME 20th Joint Propulsion Conference, AIAA-84-1743, Cincinnati, 1984
[39] Shadid J, Moffat H, Hutchinson SA, Hennigan G, Devine K, Salinger A. MPSalsa: a finite element computer program for reacting flow problems part I: Theorical development. Technical Report SAND96-2752, Sandia National Laboratory, 1996; Shadid J, Moffat H, Hutchinson SA, Hennigan G, Devine K, Salinger A. MPSalsa: a finite element computer program for reacting flow problems part I: Theorical development. Technical Report SAND96-2752, Sandia National Laboratory, 1996
[40] Shadid, J. N.; Tuminaro, R. S.; Walker, H. F., An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport, J Comput Phys, 137, 1, 155-185 (1997) · Zbl 0898.76066
[41] Sleijpen, G. L.G.; Fokkema, D. R., BICGSTAB (l) for linear equations involving unsymmetric matrices with complex spectrum, Electron Trans Numer Anal, 1, 11-32 (1993) · Zbl 0820.65016
[42] Sleijpen, G. L.G.; van der Vorst, H. A., Maintaining convergence properties of BICGSTAB methods in finite precision arithmetic, Numer Algorithms, 10, 203-223 (1995) · Zbl 0837.65030
[43] Sleijpen, G. L.G.; van der Vorst, H. A., An overview of approaches for the stable computation of hybrid Bi-CG methods, Appl Numer Math, 19, 235-254 (1996) · Zbl 0842.65018
[44] Sockol, P., Multigrid solution of the Navier-Stokes equations on highly stretched grids, Int J Numer Meth Fluids, 17, 543-566 (1993) · Zbl 0784.76073
[45] Thompson, M. C.; Ferziger, J. H., An adaptive multigrid technique for the incompressible Navier-Stokes equations, J Comput Phys, 82, 94-121 (1989) · Zbl 0665.76034
[46] Vanka SP. Block implicit coupled calculation of internal fluid flow. In Fifth Symposium on Turbulent Shear Flows, Cornell University, 1985, p. 20-d32; Vanka SP. Block implicit coupled calculation of internal fluid flow. In Fifth Symposium on Turbulent Shear Flows, Cornell University, 1985, p. 20-d32
[47] Vanka, S. P., Block-implicit multigrid solution of Navier-Stokes equations in primitive variables, J Comput Phys, 65, 138-158 (1986) · Zbl 0606.76035
[48] Varga RS. Matrix iterative analysis. Englewood Cliffs, NJ: Prentice-Hall; 1962; Varga RS. Matrix iterative analysis. Englewood Cliffs, NJ: Prentice-Hall; 1962
[49] Vasseur X. Etude numérique de techniques d’accélération de convergence lors de la résolution des équations de Navier-Stokes en formulation découplée ou fortement couplée. PhD Thesis, Université de Nantes, 1998; Vasseur X. Etude numérique de techniques d’accélération de convergence lors de la résolution des équations de Navier-Stokes en formulation découplée ou fortement couplée. PhD Thesis, Université de Nantes, 1998
[50] van der Vorst, H. A., BICGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems, SIAM J Sci Stat Comput, 13, 2, 631-644 (1992) · Zbl 0761.65023
[51] Washio, T.; Oosterlee, C. W., Flexible multiple semicoarsening for three-dimensional singularly perturbed problems, SIAM J Sci Comput, 19, 5, 1646-1666 (1998) · Zbl 0913.65110
[52] Wesseling P. An introduction to multigrid methods. Chichester: Wiley; 1992; Wesseling P. An introduction to multigrid methods. Chichester: Wiley; 1992 · Zbl 0760.65092
[53] Wilcox DC. Turbulence modeling for CFD DCW Industries, California, USA, 1993; Wilcox DC. Turbulence modeling for CFD DCW Industries, California, USA, 1993
[54] Wittum G. On the robustness of ILU-smoothing. In W.Hackbusch, editor, Robust Multigrid Methods, Fourth GAMM-Seminar, Notes on Numer Fluid Mech vol.23, Vieweg, 1988, p. 217-39; Wittum G. On the robustness of ILU-smoothing. In W.Hackbusch, editor, Robust Multigrid Methods, Fourth GAMM-Seminar, Notes on Numer Fluid Mech vol.23, Vieweg, 1988, p. 217-39
[55] Zijlema, M.; Wesseling, P., Higher-order flux-limiting schemes for the finite volume computation of incompressible flow, Int J Comput Fluid Dyn, 9, 89-109 (1998) · Zbl 0907.76066
[56] Marcel Zijlema.Computational modeling of turbulent flow in general domains. PhD Thesis, University of Technology, Department of Mathematics and Informatics, Delft, 1996; Marcel Zijlema.Computational modeling of turbulent flow in general domains. PhD Thesis, University of Technology, Department of Mathematics and Informatics, Delft, 1996 · Zbl 0868.76074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.