×

Complementary use of priors for pulmonary imaging with electrical impedance and ultrasound computed tomography. (English) Zbl 1466.92085

Summary: For medical professionals caring for patients undergoing mechanical ventilation due to respiratory failure, the ability to quickly and safely obtain images of pulmonary function at the patient’s bedside would be highly desirable. Such images could be used to provide early warnings of developing pulmonary pathologies in real time, thereby reducing the incidence of complications and improving patient outcomes. Electrical impedance tomography (EIT) and low-frequency ultrasound computed tomography (USCT) are two imaging techniques with the potential to provide real-time non-ionizing pulmonary monitoring in the ICU setting, and each method has its own unique advantages as well as drawbacks. In this work, we describe a new algorithm for a system in which the strengths of the two modalities are combined in a complementary fashion. Specifically, preliminary reconstructions from each modality are used as priors to stabilize subsequent reconstructions, providing improved spatial resolution, sharper organ boundaries, and enhanced appearance of pathologies and other features. Results are validated using three numerically simulated thoracic phantoms representing pulmonary pathologies.

MSC:

92C55 Biomedical imaging and signal processing
78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
76M21 Inverse problems in fluid mechanics
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs

Software:

k-Wave
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Blankman, P.; Gommers, D., Lung monitoring at the bedside in mechanically ventilated patients, Curr. Opin. Crit. Care., 18, 3, 261-266 (2012)
[2] Domenighetti, G.; Maggiorini, M., Electrical impedance tomography to guide ventilation in ALI-ARDS patients: A research tool for zealous physiologists or an imminent support for the real world intensivist?, Minerva Anestesiol., 76, 986-988 (2010)
[3] Frerichs, I.; Hinz, J.; Herrmann, P.; Weisser, G.; Hahn, G.; Dudykevych, T.; Quintel, M.; Hellige, G., Detection of local lung air content by electrical impedance tomography compared with electron beam CT, J. Appl. Physiol., 93, 2, 660-666 (2002)
[4] Frerichs, I.; Schmitz, G.; Pulletz, S.; Schädler, D.; Zick, G.; Scholz, J.; Weiler, N., Reproducibility of regional lung ventilation distribution determined by electrical impedance tomography during mechanical ventilation, Physiol. Meas., 28, S261-S267 (2007)
[5] Hedenstierna, G., Using electric impedance tomography to assess regional ventilation at the bedside, Am. J. Respir. Crit. Care Med., 169, 777-783 (2004)
[6] Kunst, P. W.; de Anda, G. V.; Bohm, S. H.; Faes, T. J.; Lachmann, B.; Postmus, P. E.; de Vries, P. M., Monitoring of recruitment and derecruitment by electrical impedance tomography in a model of acute lung injury, Crit. Care Med., 28, 12, 3891-3895 (2000)
[7] Lowhagen, K.; Lundin, S.; Stenqvist, O., Regional intratidal gas distribution in acute lung injury and acute respiratory distress syndrome - assessed by electric impedance tomography, Minerva Anestesiol., 76, 12, 1024-1035 (2010)
[8] Victorino, J. A.; Borges, J. B.; Okamoto, V. N.; Matos, G. F.J.; Tucci, M. R.; Caramez, M. P.R.; Tanaka, H.; Sipmann, F. S.; Santos, D. C.B.; Barbas, C. S.V.; Carvalho, C. R.R.; Amato, M. B.P., Imbalances in regional lung ventilation: a validation study on electrical impedance tomography, Am. J. Resp. Crit. Care Med., 169, 7, 791-800 (2004)
[9] Muders, T.; Luepschen, H.; Putensen, C., Impedance tomography as a new monitoring technique, Curr. Opin. Crit. Care, 16, 269-275 (2010)
[10] Arad, M.; Zlochiver, S.; Davidson, T.; Shoenfeld, Y.; Adunsky, A.; Abboud, A., The detection of pleural effusion using a parametric EIT technique, Physiol. Meas., 30, 4, 421-428 (2009)
[11] Nguyen, D.; Jin, C.; Thiagalingam, A.; McEwan, A., A review on electrical impedance tomography for pulmonary perfusion imaging, Physiol. Meas., 33, 5, 695-706 (2012)
[12] Costa, E.; Chaves, C.; Gomes, S.; Beraldo, M.; Volpe, M.; Tucci, M.; Schettino, I.; Bohm, S.; Carvalho, C.; Tanaka, H.; R. G., L.; Amato, M., Real-time detection of pneumothorax using electrical impedance tomography, Crit. Care Med., 36, 4, 1230-1238 (2008)
[13] Costa, E.; Gonzalez Lima, R.; Amato, M., Electrical impedance tomography, (Vincent, J., Intensive Care Medicine (2009), Springer: Springer New York), 394-404
[14] Erlandsson, K.; Odenstedt, H.; Lundin, S.; Stenqvist, O., Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery, Acta Anaesthesiol Scand., 50, 833-839 (2006)
[15] Lindgren, S.; Odenstedt, H.; Olegøard, C.; Söndergaard, S.; Lundin, S.; Stenqvist, O., Regional lung derecruitment after endotracheal suction during volume- or pressure-controlled ventilation: a study using electric impedance tomography, Intensive Care Med., 33, 172-180 (2007)
[16] Meier, T.; Luepschen, H.; Karsten, J.; Leibecke, T.; Grossherr, M.; Gehring, H.; Leonhardt, S., Assessment of regional lung recruitment and derecruitment during a PEEP trail based on electrical impedance tomography, Intensive Care Med., 34, 543-550 (2008)
[17] Putensen, C.; Wrigge, H.; Zinserling, J., Electrical impedance tomography guided ventilation therapy, Curr. Opin. Crit. Care, 13, 344-350 (2007)
[18] Morenz, K.; Biller, H.; Wolfram, F.; Leonhadt, S.; Rüter, D.; Glaab, T.; Uhlig, S.; Hohlfeld, J. M., Detection of air trapping in chronic obstructive pulmonary disease by low frequency ultrasound, BMC Pulm. Med., 12, 8 (2012)
[19] Rueter, D.; Hauber, H.; Droeman, D.; Zabel, P.; Uhlig, S., Low-frequency ultrasound permeates the human thorax and lung: A novel approach to non-invasive monitoring, Eur. J. Ultrasound, 31, 53-62 (2010)
[20] Alsaker, M.; Mueller, J. L., A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci., 9, 4, 1619-1654 (2016) · Zbl 1381.94007
[21] Alsaker, M.; Mueller, J. L., Use of an optimized spatial prior in D-bar reconstructions of EIT tank data, Inverse Probl. Imaging, 12, 4, 883-901 (2018) · Zbl 1395.94018
[22] Alsaker, M.; Mueller, J. L.; Murthy, R., Dynamic optimized priors for D-bar reconstructions of human ventilation using electrical impedance tomography, J. Comput. Appl. Math., 362, 276-294 (2019) · Zbl 1418.92067
[23] Avis, N. J.; Barber, D. C., Incorporating a priori information into the Sheffield filtered backprojection algorithm, Physiol. Meas., 16, 3A, A111-A122 (1995)
[24] Dehghani, H.; Barber, D. C.; Basarab-Horwath, I., Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography, Physiol. Meas., 20, 1, 87-102 (1999)
[25] Kaipio, J. P.; Kolehmainen, V.; Vauhkonen, M.; Somersalo, E., Inverse problems with structural prior information, Inverse Problems, 15, 3, 713-729 (1999) · Zbl 0949.65144
[26] Soleimani, M., Electrical impedance tomography imaging using a priori ultrasound data, BioMed. Eng. OnLine, 5, 8 (2006)
[27] Dodd, M.; Mueller, J. L., A real-time D-bar algorithm for 2-D electrical impedance tomography data, Inverse Probl. Imaging, 8, 4, 1013-1031 (2014) · Zbl 1328.35304
[28] Ammari, H.; Bonnetier, E.; Capdeboscq, Y.; Tanter, M.; Fink, M., Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68, 6, 1557-1573 (2008) · Zbl 1156.35101
[29] Gebauer, B.; Scherzer, O., Impedance-acoustic tomography, SIAM J. Appl. Math., 69, 2, 565-576 (2008) · Zbl 1159.92027
[30] Zhang, H.; Wang, L. V., Acousto-electric tomography, (Photons Plus Ultrasound: Imaging and Sensing, Vol. 5320 (2004), International Society for Optics and Photonics), 145-149
[31] Grasland-Mongrain, P.; Mari, J. M.; Chapelon, J. Y.; Lafon, C., Lorentz force electrical impedance tomography, IRBM, 34, 4-5, 357-360 (2013)
[32] Syed, H.; Borsic, A.; Hartov, A.; Halter, R. J., Anatomically accurate hard priors for transrectal electrical impedance tomography (TREIT) of the prostate, Physiol. Meas., 33, 5, 719-738 (2012)
[33] Kulkarni, R.; Kao, T. J.; Boverman, G.; Saulnier, G. J.; Isaacson, D.; Szabo, T. L.; Newell, J. C., A hand-held probe for combined ultrasound and electrical impedance tomography, J. Phys. Conf. Ser., 224, Article 012043 pp. (2010)
[34] Murphy, E. K.; Skinner, J.; Martucci, M.; Rutkove, S. B.; Halter, R. J., Toward electrical impedance tomography coupled ultrasound imaging for assessing muscle health, IEEE Trans. Med. Imaging, 38, 6, 1409-1419 (2018)
[35] Wan, Y.; Halter, R.; Borsic, A.; Manwaring, P.; Hartov, A.; Paulsen, K., Sensitivity study of an ultrasound coupled transrectal electrical impedance tomography system for prostate imaging, Physiol. Meas., 31, 8, S17-S29 (2010)
[36] Yunus, F. R.M.; Rahim, R. A.; Aw, S. R.; Ayob, N. M.N.; Goh, C. L.; Pusppanathan, M. J., Simulation study of electrode size in air-bubble detection for dual-mode integrated electrical resistance and ultrasonic transmission tomography, Powder Technol., 256, 224-232 (2014)
[37] Steiner, G., Sequential fusion of ultrasound and electrical capacitance tomography, Int. J. Inf. Syst. Sci, 2, 4, 484-497 (2006) · Zbl 1115.78300
[38] Steiner, G.; Soleimani, M.; Watzenig, D., A bio-electromechanical imaging technique with combined electrical impedance and ultrasound tomography, Physiol. Meas., 29, 6, S63-S75 (2008)
[39] Liang, G.; Ren, S.; Dong, F., Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction, Meas. Sci. Technol., 28, 7, Article 074003 pp. (2017)
[40] Teniou, S.; Meribout, M., A multimodal image reconstruction method using ultrasonic waves and electrical resistance tomography, IEEE Trans. Image Process., 24, 11, 3512-3521 (2015) · Zbl 1408.94641
[41] Murphy, E. K.; Mahara, A.; Wu, X.; Halter, R. J., Phantom experiments using soft-prior regularization EIT for breast cancer imaging, Physiol. Meas., 38, 6, 1262-1277 (2017)
[42] R. J. Lavarello, M. L.O., A study on the reconstruction of moderate contrast targets using the distorted Born iterative method, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55, 112-124 (2008)
[43] Lavarello, R. J.; Hesford, A. J., Methods for forward and inverse scattering in ultrasound tomography, (Mamou, J.; Oelze, M. L., Quantitative Ultrasound in Soft Tissues (2013), Springer Netherlands), 345-394
[44] Radin, L.; Osher, S.; Fatemi, E., Non-linear total variation noise removal algorithm, Physica D, 60, 259-268 (1992) · Zbl 0780.49028
[45] Nachman, A. I., Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143, 1, 71-96 (1996) · Zbl 0857.35135
[46] Faddeev, L. D., Increasing solutions of the Schroedinger equation, Sov. Phys. Dokl., 10, 1033-1035 (1966) · Zbl 0147.09404
[47] Mueller, J. L.; Siltanen, S., Linear and Nonlinear Inverse Problems with Practical Applications (2012), SIAM: SIAM Philadelphia, PA · Zbl 1262.65124
[48] Siltanen, S.; Mueller, J. L.; Isaacson, D., An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse Problems, 16, 3, 681-699 (2000) · Zbl 0962.35193
[49] Knudsen, K.; Lassas, M.; Mueller, J. L.; Siltanen, S., Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imaging, 35, 4, 599-624 (2009) · Zbl 1184.35314
[50] Treeby, B. E.; Cox, B. T., K-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, J. Biomed. Opt., 15, 2, Article 021314 pp. (2010)
[51] Mast, T. D.; Nachman, A.; Waag, R. C., Focusing and imaging using eigenfunctions of the scattering operator, J. Acoust. Soc. Am., 102, 2, 715-725 (1997)
[52] Cheney, M.; Isaacson, D., Distinguishability in impedance imaging, IEEE Trans. Biomed. Eng., 39, 8, 852-860 (1992)
[53] Murphy, E. K.; Mueller, J. L., Effect of domain shape modeling and measurement errors on the 2-D D-bar method for EIT, IEEE Trans. Med. Imaging, 28, 10, 1576-1584 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.