×

Second-order derivatives of the general-purpose finite element package SEPRAN via source transformation. (English) Zbl 1303.76085

Summary: Second-order derivatives are crucial ingredients to a variety of numerical methods. Often, they are difficult to get with numerical differentiation by divided differencing. Automatic differentiation provides an alternative by a program transformation capable of evaluating Jacobians, Hessians, or higher-order derivatives of functions given in the form of computer programs. SEPRAN is a general-purpose finite element package written in Fortran 77 used in various scientific areas ranging from fluid dynamics to structural mechanics to electromagnetism. By transforming SEPRAN twice using the automatic differentiation tool ADIFOR, second-order derivatives are evaluated without truncation error. Numerical experiments are reported in which second-order derivatives of a flow field with respect to an inflow velocity are computed, demonstrating the feasibility of this approach.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
65D25 Numerical differentiation

Software:

SEPRAN; TFad; TAF; ADIFOR; CFL3D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abate, J.; Bischof, C.; Carle, A.; Roh, L., Algorithms and design for a second-order automatic differentiation module, (Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computing (ISSAC’97). Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computing (ISSAC’97), Maui, Hawaii, USA, July 21-23, 1997 (1997), ACM Press: ACM Press New York), 149-155 · Zbl 0923.68068
[2] Atkinson, A. C.; Donev, A. N., Optimum Experimental Designs, Oxford Statistical Science Series, vol. 8 (1992), Oxford University Press: Oxford University Press Oxford, UK · Zbl 0829.62070
[3] Bischof, C.; Carle, A.; Khademi, P.; Mauer, A., ADIFOR 2.0: automatic differentiation of Fortran 77 programs, IEEE Computational Science and Engineering, 3, 3, 18-32 (1996)
[4] C.H. Bischof, H.M. Bücker, Computing derivatives of computer programs. In: J. Grotendorst (Ed.), Modern Methods and Algorithms of Quantum Chemistry: Proceedings, NIC Series, second ed., vol. 3, NIC-Directors, Jülich, 2000, pp. 315-327.; C.H. Bischof, H.M. Bücker, Computing derivatives of computer programs. In: J. Grotendorst (Ed.), Modern Methods and Algorithms of Quantum Chemistry: Proceedings, NIC Series, second ed., vol. 3, NIC-Directors, Jülich, 2000, pp. 315-327.
[5] Bischof, C. H.; Bücker, H. M.; Rasch, A., Enabling technologies for robust high-performance simulations in computational fluid dynamics, (Schröder, W., Summary of Flow Modulation and Fluid-Structure Interaction Findings, Number 109: Notes on Numerical Fluid Mechanics and Multidisciplinary Design (2010), Springer: Springer Berlin), 153-180
[6] Bischof, C. H.; Bücker, H. M.; Rasch, A.; Slusanschi, E., Sensitivities for a single drop simulation, (Sloot, P. M.A.; Abramson, D.; Bogdanov, A. V.; Dongarra, J. J.; Zomaya, A. Y.; Gorbachev, Y. E., Computational Science - ICCS 2003. Proceedings of the International Conference on Computational Science. Computational Science - ICCS 2003. Proceedings of the International Conference on Computational Science, Melbourne, Australia, St. Petersburg, Russia, June 2-4, 2003. Part II, Lecture Notes in Computer Science, vol. 2658 (2003), Springer: Springer Berlin), 888-896
[7] Bosch, E. G.T.; Lasance, C. J.M., High accuracy thermal interface resistance measurement using a transient method, Electronics Cooling Magazine, 6, 3, 26-32 (2000)
[8] Bücker, H. M.; Petera, M.; Vehreschild, A., Code optimization techniques in source transformations for interpreted languages, (Bischof, C.; Bücker, H. M.; Hovland, P. D.; Naumann, U.; Utke, J., Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering (2008), Springer: Springer Berlin) · Zbl 1156.68621
[9] Bücker, H. M.; Rasch, A.; Slusanschi, E.; Bischof, C. H., Delayed propagation of derivatives in a two-dimensional aircraft design optimization problem, (Sénéchal, D., Proceedings of the 17th Annual International Symposium on High Performance Computing Systems and Applications and OSCAR Symposium. Proceedings of the 17th Annual International Symposium on High Performance Computing Systems and Applications and OSCAR Symposium, Sherbrooke, Québec, Canada, May 11-14, 2003 (2003), NRC Research Press: NRC Research Press Ottawa), 123-126
[10] A. Carle, M. Fagan, L.L. Green, Preliminary results from the application of automated adjoint code generation to CFL3D, in: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA, September 2-4, 1998, AIAA Paper 98-4807, 1998.; A. Carle, M. Fagan, L.L. Green, Preliminary results from the application of automated adjoint code generation to CFL3D, in: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, USA, September 2-4, 1998, AIAA Paper 98-4807, 1998.
[11] A. Carle, L.L. Green, C.H. Bischof, P.A. Newman, Applications of automatic differentiation in CFD, in: Proceedings of the 25th AIAA Fluid Dynamics Conference, Colorado Springs, CO, USA, June 20-23, 1994, AIAA Paper 94-2197, 1994.; A. Carle, L.L. Green, C.H. Bischof, P.A. Newman, Applications of automatic differentiation in CFD, in: Proceedings of the 25th AIAA Fluid Dynamics Conference, Colorado Springs, CO, USA, June 20-23, 1994, AIAA Paper 94-2197, 1994.
[12] Christianson, B., Reverse accumulation and attractive fixed points, Optimization Methods and Software, 3, 311-326 (1994)
[13] Forth, S. A.; Evans, T. P., Aerofoil optimisation via AD of a multigrid cell-vertex Euler flow solver, (Corliss, G.; Faure, C.; Griewank, A.; Hascoët, L.; Naumann, U., Automatic Differentiation of Algorithms: From Simulation to Optimization, Computer and Information Science (2002), Springer: Springer New York, NY), 153-160, (Chapter 17)
[14] Gay, D. M., Semiautomatic differentiation for efficient gradient computations, (Bücker, H. M.; Corliss, G.; Hovland, P.; Naumann, U.; Norris, B., Automatic Differentiation: Applications, Theory, and Implementations, Lecture Notes in Computational Science and Engineering (2005), Springer), 147-158 · Zbl 1270.65012
[15] Giering, R.; Kaminski, T.; Eisfeld, B.; Gauger, N.; Raddatz, J.; Reimer, L., Automatic differentiation of FLOWer and MUGRIDO, (Kroll, N.; Schwamborn, D.; Becker, K.; Rieger, H.; Thiele, F., MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design, Number 107: Notes on Numerical Fluid Mechanics and Multidisciplinary Design (2009), Springer: Springer Berlin), 221-235
[16] Giering, R.; Kaminski, T.; Slawig, T., Generating efficient derivative code with TAF: Adjoint and tangent linear Euler flow around an airfoil, Future Generation Computer Systems, 21, 8, 1345-1355 (2005)
[17] Green, L. L.; Newman, P. A.; Haigler, K. J., Sensitivity derivatives for advanced CFD algorithm and viscous modeling parameters via automatic differentiation, Journal of Computational Physics, 125, 2, 313-324 (1996) · Zbl 0848.76058
[18] Griewank, A.; Walther, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Number 105: Other Titles in Applied Mathematics (2008), SIAM: SIAM Philadelphia, PA
[19] Gross-Hardt, E.; Slusanschi, E.; Bücker, H. M.; Pfennig, A.; Bischof, C. H., Practical shape optimization of a levitation device for single droplets, Optimization and Engineering, 9, 2, 179-199 (2008) · Zbl 1175.76050
[20] Marquardt, W., Model-based experimental analysis of kinetic phenomena in multi-phase reactive systems, Transactions of the Institution of Chemical Engineers, 83, A6, 561-573 (2005)
[21] Mohammadi, B.; Pironneau, O., Applied Shape Optimization for Fluids (2001), Oxford University Press: Oxford University Press Oxford · Zbl 0970.76003
[22] Nocedal, J.; Wright, S. J., Numerical Optimization, Springer Series in Operations Research (2006), Springer: Springer New York
[23] Rall, L. B., Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer Science, vol. 120 (1981), Springer-Verlag: Springer-Verlag Berlin
[24] Segal, G., SEPRAN Users Manual (1993), Ingenieursbureau SEPRA: Ingenieursbureau SEPRA Leidschendam, NL
[25] Segal, G.; Vuik, C.; Vermolen, F., A conserving discretization for the free boundary in a two-dimensional Stefan problem, Journal of Computational Physics, 141, 1, 1-21 (1998) · Zbl 0931.65100
[26] van Keken, P. E.; Yuen, D. A.; Petzold, L. R., DASPK: A new high order and adaptive time-integration technique with applications to mantle convection with strongly temperature- and pressure-dependent rheology, Geophysical and Astrophysical Fluid Dynamics, 80, 57-74 (1995)
[27] Vermolen, F.; Vuik, C.; van der Zwaag, S., Cross-diffusion controlled particle dissolution in metallic alloys, Computing and Visualization in Science, 8, 1, 27-33 (2004) · Zbl 1512.80008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.