×

\(\ell_1\)-based construction of polycube maps from complex shapes. (English) Zbl 1322.68223


MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry

Software:

Netgen; CHOLMOD; NLPL1; MESH
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Alexa, D. Cohen-Or, and D. Levin. 2000. As-rigid-as-possible shape interpolation. In Proceedings of the Annual ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 157–164.
[2] K. D. Andersen. 1996. An efficient newton barrier method for minimizing a sum of euclidean norms. SIAM J. Optim. 6, 1, 74–95. · Zbl 0842.90105 · doi:10.1137/0806006
[3] N. Aspert, D. Santa-Cruz, and T. Ebrahimi. 2002. Mesh: Measuring errors between surfaces using the hausdorff distance. In Proceedings of the IEEE International Conference and Multimedia Expo (ICME’02). Vol. 1. 705–708. · doi:10.1109/ICME.2002.1035879
[4] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or. 2010. ℓ<sub>1</sub>-sparse reconstruction of sharp point set surfaces. ACM Trans. Graph. 29, 5, 135.
[5] M. Benzi, G. Golub, and J. Liesen. 2005. Numerical solution of saddle point problems. Acta Numerica 14, 1, 1–137. · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[6] M. Botsch, M. Pauly, M. Gross, and I. Kobbelt. 2006. Primo: Coupled prisms for intuitive surface modeling. In Proceedings of the Symposium on Geometry Processing. Vol. 256. 11–20.
[7] M. Campen, D. Bommes, and I. Kobbelt. 2012. Dual loops meshing: Quality quad layouts on manifolds. ACM Trans. Graph. 31, 4, 110.
[8] Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. 2008. Algorithm 887: Cholmod, supernodal sqare cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3, 22:1–22:14.
[9] R. El-Attar, M. Vidyasagar, and S. Dutta. 1979. An algorithm for ℓ<sub>1</sub>-norm minimization with application to nonlinear ℓ<sub>1</sub>-approximation. SIAM J. Numer. Anal. 16, 1, 70–86. · Zbl 0401.90089 · doi:10.1137/0716006
[10] I. Garcia, J. Xia, Y. He, S.-Q. Xin, and G. Patow. 2013. Interactive applications for sketch-based editable polycube map. IEEE Trans. Vis. Comput. Graph. 19, 7, 1158–1171. · doi:10.1109/TVCG.2012.308
[11] N. I. M. Gould, D. Orban, and P. L. Toint. 2003. An interior-point ℓ<sub>1</sub>-penalty method for nonlinear optimization. Tech. rep. RAL-TR-2003-022, Rutherford Appleton Laboratory.
[12] J. Gregson, A. Sheffer, and E. Zhang. 2011. All-hex mesh generation via volumetric polycube deformation. Comput. Graph. Forum 30, 5, 1407–1416. · doi:10.1111/j.1467-8659.2011.02015.x
[13] Y. He, H. Wang, C.-W. Fu, and H. Qin. 2009. A divide-and-conquer approach for automatic polycube map construction. Comput. Graph. 53, 369–380. · doi:10.1016/j.cag.2009.03.024
[14] J. Huang, Y. Tong, H. Wei, and H. Bao. 2011. Boundary aligned smooth 3d cross-frame field. ACM Trans. Graph. 30, 6, 143.
[15] P. J. Huber. 1981. Robust Statistics. John Wiley & Sons. · Zbl 0536.62025 · doi:10.1002/0471725250
[16] G. Irving, J. Teran, and R. Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 131–140.
[17] F. Knoppel, K. Crane, U. Pinkall, and P. Schroder. 2013. Globally optimal direction fields. ACM Trans. Graph. 32, 4, 59:1–59:10.
[18] Y. Li, Y. Liu, W. Xu, W. Wang, and B. Guo. 2012. All-hex meshing using singularity-restricted field. ACM Trans. Graph. 31, 6, 177:1–177:11.
[19] J. Lin, X. Jin, Z. Fan, and C. C. L. Wang. 2008. Automatic polycube-maps. In Proceedings of the 5<sup>th</sup> International Conference on Advances in Geometric Modeling and Processing (GMP’08). Springer, 3–16.
[20] L. Luksan, C. Matonoha, and J. Vlcek. 2007. Trust region interior-point method for large sparse ℓ<sub>1</sub> optimization. Optim. Methods Softw. 22, 5, 737–753. · Zbl 1193.90197 · doi:10.1080/10556780601114204
[21] A. Myles, N. Pietroni, D. Kovacs, and D. Zorin. 2010. Feature-aligned t-meshes. ACM Trans. Graph. 29, 4, 117.
[22] M. C. Pinar and W. M. Hartmann. 2006. Huber approximation for the non-linear ℓ<sub>1</sub> problem. Euro. J. Oper. Res. 169, 3, 1096–1107. · Zbl 1203.90150 · doi:10.1016/j.ejor.2004.10.029
[23] SANDIA NATIONAL LABORATORY. 2010. Mesh verification with verdict. https://cubit.sandia.gov/public/verdict.html.
[24] K. Schittkowski. 2008. NLPL1: A fortran implementation of an sqp algorithm for minimizing sums of absolute function values, user’s guide. www.ai7.uni-bayreuth.de/NLPL1.pdf.
[25] J. Schoberl. 1997. Netgen: An advancing front 2d/3d-mesh generator based on abstract rules. Comput. Vis. Sci. 1, 1, 41–52. · Zbl 0883.68130 · doi:10.1007/s007910050004
[26] M. Tarini, K. Hormann, P. Cignoni, and C. Montani. 2004. Polycube-maps. ACM Trans. Graph. 23, 3, 853–860. · Zbl 05457621 · doi:10.1145/1015706.1015810
[27] M. Tarini, E. Puppo, D. Panozzo, N. Pietroni, and P. Cignoni. 2011. Simple quad domains for field aligned mesh parameterization. ACM Trans. Graph. 30, 6, 142.
[28] H. Wang, M. Jin, Y. He, X. Gu, and H. Qin. 2008. User-controllable polycube map for manifold spline construction. In Proceedings of the ACM Symposium on Solid and Physical Modeling. 397–404.
[29] C. Yao and T. Lee. 2008. Adaptive geometry image. IEEE Trans. Vis. Comput. Graph. 14, 4, 948–960. · Zbl 05339936 · doi:10.1109/TVCG.2008.39
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.