Sherwin, William B. Entropy and information approaches to genetic diversity and its expression: genomic geography. (English) Zbl 1229.92063 Entropy 12, No. 7, 1765-1798 (2010). Summary: We highlight advantages of entropy-based genetic diversity measures, at levels from gene expression to landscapes. Shannon’s entropy-based diversity is the standard for ecological communities. The exponentials of Shannon’s and the related “mutual information” excel in their ability to express diversity intuitively, and provide a generalised method of considering microscopic behaviour to make macroscopic predictions, under given conditions. The hierarchical nature of entropy and information allows integrated modeling of diversity along one DNA sequence, and between different sequences within and among populations, species,\( etc\). The aim is to identify the formal connections between genetic diversity and the flow of information to and from the environment. Cited in 2 Documents MSC: 92D10 Genetics and epigenetics 94A17 Measures of information, entropy 92C40 Biochemistry, molecular biology Keywords:entropy; information; genes; DNA sequence; subdivision; dispersal; migration; natural selection; genome-wide association studies; linkage disequilibrium; gene expression; gene regulation; disease phenotypes Software:TETRASAT; GenAlEx; SPSS PDF BibTeX XML Cite \textit{W. B. Sherwin}, Entropy 12, No. 7, 1765--1798 (2010; Zbl 1229.92063) Full Text: DOI References: [1] DOI: 10.1111/j.1365-294X.2006.02992.x [2] Zar, Biostatistical analysis (1984) [3] DOI: 10.1088/0953-8984/22/6/063101 [4] DOI: 10.1016/j.jtbi.2007.12.007 · Zbl 1398.92272 [5] Dewar, Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: Don’t shoot the messenger, Entropy 11 pp 931– (2009) [6] Barton, On the application of statistical physics to evolutionary biology, J. Theoret. Biol. 259 pp 317– (2009) · Zbl 1402.92308 [7] Lande, Statistics and partitioning of species diversity and similarity among multiple communities, Oikos 76 pp 5– (1996) [8] Zhang, Modeling multi-species interacting ecosystem by a simple equation, Int. Joint Conf. Comp. Sci. Opt. 1 pp 1003– (2009) [9] DOI: 10.1016/j.physa.2007.06.047 [10] DOI: 10.1101/SQB.1955.020.01.006 [11] DOI: 10.1016/0040-5809(72)90035-4 · Zbl 0245.92009 [12] Ewens, Mathematical Population Genetics (1979) [13] Hubbell, The Unified Neutral Theory of Biodiversity and Biogeography (2001) [14] Friedman, The Index of Coincidence and its Applications in Cryptology (1922) [15] Index of coincidencehttp://en.wikipedia.org/wiki/Index_of_coincidence [16] Kimura, The number of alleles that can be maintained in a finite population, Genetics 49 pp 725– (1964) [17] Rao, Diversity and dissimilarity coefficients: a unified approach, Theoret. Pop. Biol. 21 pp 24– (1982) · Zbl 0516.92021 [18] DOI: 10.1002/j.1538-7305.1948.tb01338.x · Zbl 1154.94303 [19] Bell, Information Theory (1968) [20] Cover, Elements of Information Theory (1991) [21] Csiszár, Information theory and statistics: A tutorial, Found. Tr. Commun. Inform. Theor. 1 pp 417– (2004) [22] DOI: 10.4039/n04-040 [23] DOI: 10.1007/s10750-008-9664-x [24] Lewontin, The apportionment of human diversity, Evol. Biol. 6 pp 381– (1972) [25] Smouse, A comparison of the genetic infra-structure of the Ye’cuana and Yanomama: A likelihood analysis of genotypic variation among populations, Genetics 88 pp 611– (1978) [26] Hartl, Allozymes in mammalian population genetics and systematics: Indicative function of a marker system reconsidered, Exp. Suppl. 69 pp 299– (1994) [27] DOI: 10.1046/j.1365-294X.2001.01264.x [28] DOI: 10.1111/j.1601-5223.2004.01659.x [29] DOI: 10.1111/j.1365-294X.2004.02120.x [30] DOI: 10.1111/j.2006.0030-1299.14714.x [31] DOI: 10.1890/06-1736.1 [32] DOI: 10.1111/j.1365-294X.2008.03887.x [33] DOI: 10.1111/j.1365-294X.2009.04186.x [34] DOI: 10.1111/j.1472-4642.2009.00626.x [35] DOI: 10.1016/j.plrev.2004.01.002 [36] DOI: 10.1007/s11538-006-9141-5 · Zbl 1139.92301 [37] DOI: 10.1111/j.2006.0030-1299.14267.x [38] DOI: 10.1007/s11284-006-0303-6 [39] DOI: 10.1126/science.282.5394.1695 [40] DOI: 10.1098/rsif.2007.0213 [41] DOI: 10.1111/j.0030-1299.2005.13735.x [42] DOI: 10.2307/1934352 [43] DOI: 10.1007/BF01016429 · Zbl 1082.82501 [45] DOI: 10.3390/d2020207 [46] DOI: 10.1016/j.jtbi.2006.04.017 [47] Wright, The genetical structure of populations, Ann. Eugen. 16 pp 323– (1951) · Zbl 0042.14605 [48] DOI: 10.1111/j.1365-294X.2009.04185.x [49] DOI: 10.1111/j.1472-4642.2007.00316.x [50] SPSShttp://www.spss.com/ [51] Log-Linear Analysis for an AxBxC Contingency Tablehttp://faculty.vassar.edu/lowry/abc.html [52] DOI: 10.1016/j.tpb.2009.01.008 · Zbl 1211.92065 [54] Everitt, The Analysis of Contingency Tables (1992) · Zbl 0777.62060 [55] DOI: 10.1111/j.1541-0420.2008.01010.x · Zbl 1151.62362 [56] DOI: 10.1006/viro.2001.1092 [57] DOI: 10.1111/j.1654-1103.2009.01042.x [58] Excoffier, Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data, Genetics 131 pp 479– (1992) [59] Page, Molecular Evolution: a Phylogenetic Approach (1998) [60] DOI: 10.1111/j.1365-2745.2008.01423.x [61] DOI: 10.1016/j.tpb.2006.06.003 · Zbl 1112.92067 [62] Allen, A new phylogenetic diversity measure generalizing the Shannon index and its application to phyllostomid bats, Amer. Natur. 174 pp 236– (2009) [63] DOI: 10.1016/0034-4877(71)90002-4 · Zbl 0222.62004 [64] DOI: 10.1111/j.1461-0248.2009.01344.x [65] DOI: 10.1146/annurev.ecolsys.28.1.243 [66] DOI: 10.1016/0006-3207(92)91201-3 [67] DOI: 10.1111/j.1461-0248.2009.01405.x [68] DOI: 10.1080/10635150701294741 [69] Daskalakis, Alignment-Free Phylogenetic Reconstruction, Research in Computational Molecular Biology, 14th Annual International Conference, RECOMB 2010, Lisbon, Portugal pp 123– (2010) [70] DOI: 10.1093/bioinformatics/btg295 [71] DOI: 10.1080/10635150590905984 [72] Utilsky, The average common substring approach to phylogenomic reconstruction, J. Comput. Biol. 13 pp 336– (2006) [73] DOI: 10.1073/pnas.0905115106 [74] DOI: 10.1016/j.ajhg.2009.11.017 [75] DOI: 10.1073/pnas.72.7.2761 · Zbl 0313.92011 [76] DOI: 10.1111/j.1461-0248.2004.00572.x [77] DOI: 10.1086/431318 [78] Halliburton, Introduction to Population Genetics (2004) [79] DOI: 10.3732/ajb.95.3.321 [80] DOI: 10.1111/j.1365-294X.2009.04187.x [81] DOI: 10.1111/j.1469-8137.2007.02031.x [82] DOI: 10.1038/464678a [83] DOI: 10.1038/464679a [84] DOI: 10.1007/s10038-008-0307-x [85] DOI: 10.1038/nrg2579 [86] DOI: 10.1038/sj.ejhg.5201921 [87] DOI: 10.1534/genetics.108.088542 [88] DOI: 10.1186/1471-2164-10-509 [89] DOI: 10.1073/pnas.0903244106 [90] DOI: 10.1089/1066527041410300 [91] DOI: 10.1534/genetics.107.082370 [92] DOI: 10.1371/journal.pgen.0030144 [93] DOI: 10.1534/genetics.106.060723 [94] Siegmund, The Statistics of Gene Mapping (2007) · Zbl 1280.62012 [95] DOI: 10.1534/genetics.105.050179 [96] DOI: 10.1371/journal.pbio.0040072 [97] DOI: 10.1534/genetics.106.062828 [98] DOI: 10.1098/rstb.1971.0109 [99] Slatkin, Maximum likelihood estimation of haplotype frequencies in a diploid population, Mol. Biol. Evol. 12 pp 921– (1995) [100] DOI: 10.1038/nrg2361 [101] DOI: 10.1002/gepi.20038 [102] DOI: 10.1375/twin.12.1.35 [103] DOI: 10.1007/s10709-009-9399-2 [104] DOI: 10.1007/s00439-003-1017-2 [105] DOI: 10.1017/S0016672305007354 [106] Frankham, Introduction to Conservation Genetics (2010) [107] DOI: 10.1016/0006-3207(95)00067-4 [108] DOI: 10.1046/j.1523-1739.1995.9050988.x-i1 [109] DOI: 10.1186/1742-9994-2-16 [110] DOI: 10.1103/PhysRevE.80.041903 [111] DOI: 10.1073/pnas.0501865102 [112] DOI: 10.1016/S0022-5193(88)80243-1 [113] DOI: 10.1534/genetics.108.099309 [114] DOI: 10.1073/pnas.0907953107 [115] DOI: 10.1098/rspb.2008.0427 [116] DOI: 10.1073/pnas.79.6.1940 · Zbl 0491.92013 [117] DOI: 10.1007/BF00305981 [118] Smouse, Likelihood analysis of recombinational disequilibrium in multiple locus gametic frequencies, Genetics 76 pp 557– (1974) [119] DOI: 10.1007/BF00283476 [120] DOI: 10.1111/j.1365-2516.2006.01216.x [121] Pielou, Mathematical Ecology (1977) [122] DOI: 10.1086/285124 [123] DOI: 10.1046/j.1365-294X.2003.01994.x [124] DOI: 10.1016/0022-2836(86)90165-8 [125] DOI: 10.1023/A:1026096204727 [126] DOI: 10.1080/0308107031000152513 · Zbl 1042.92021 [127] DOI: 10.1101/gr.213402 [128] Wang, Assessment of hepatitis C virus sequence complexity by electrophoretic mobilities of both single- and double-stranded DNAs, J. Clin. Microbiol. 36 pp 2982– (1998) [129] DOI: 10.1093/nar/28.14.2794 [130] DOI: 10.1016/j.bulm.2004.12.004 · Zbl 1334.92316 [131] DOI: 10.1534/genetics.109.108209 [132] DOI: 10.1089/cmb.1999.6.125 [133] DOI: 10.1186/1752-0509-3-48 [134] Adami, Evolution of complex modular biological networks, PLoS Comput. Biol. 4 pp e23– (2008) [135] DOI: 10.1073/pnas.0609152103 [136] DOI: 10.1111/j.1471-8286.2005.01155.x [137] msBayeshttp://msbayes.sourceforge.net/ [138] Microsatellite Analyzerhttp://i122server.vu-wien.ac.at/MSA/MSA_download.html [139] DOI: 10.1007/s10535-008-0106-4 [140] DOI: 10.1111/j.1471-8286.2006.01345.x [141] DOI: 10.1016/0022-5193(66)90013-0 [142] DOI: 10.1086/282436 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.