Afferrante, L.; Ciavarella, M.; Barber, J. R. Sliding thermoelastodynamic instability. (English) Zbl 1149.74343 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 462, No. 2071, 2161-2176 (2006). Summary: Numerous mechanisms can give rise to instabilities and vibrations in sliding systems. These can generally be characterized as either elastodynamic (e.g. “brake squeal”) or thermoelastic. The time-scales of these processes differ considerably, so it is usual to neglect coupling between them, i.e. to neglect thermal effects in elastodynamic analyses and to use the quasi-static approximation in thermoelastic analyses. In the present paper, we consider the potential coupling between them in the simplest possible context – a thermoelastodynamic layer sliding against a rigid plane and constrained to one-dimensional displacements. The results show that although the coupling is extremely weak, it has a destabilizing effect on the natural elastodynamic vibration of the layer at arbitrarily low sliding speeds. A numerical solution of the transient equations below the quasi-static critical speed shows that an initial disturbance grows exponentially until periods of separation develop, after which the system approaches asymptotically to a steady state involving periods of contact and separation alternating at the lowest natural frequency of the elastodynamic system. With increasing sliding speed, the proportion of the cycle spent in contact is reduced and the maximum contact pressure increases. It is important to note that neither a quasi-static thermoelastic analysis, nor an elastodynamic analysis neglecting thermal expansion would predict instability in this speed range. Similar instabilities due to thermoelastodynamic coupling are almost certain to occur in more complex practical sliding systems such as brakes and clutches, implying the need for the incorporation of these effects in commercial analysis software. The proposed mechanism might also provide an explanation of reported experimental observations of vibrations normal to the contact interface during frictional sliding. Cited in 4 Documents MSC: 74H55 Stability of dynamical problems in solid mechanics 74F05 Thermal effects in solid mechanics Keywords:thermoelastic contact; thermoelastic instability; squeal; frictional vibrations Software:HotSpotter PDF BibTeX XML Cite \textit{L. Afferrante} et al., Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 462, No. 2071, 2161--2176 (2006; Zbl 1149.74343) Full Text: DOI OpenURL References: [1] Rice, J.R., Lapusta, N. & Ranjith, K. 2001 Rate and state dependent friction and the stability of sliding between elastically deformable solids. <i>J. Mech. Phys. Solids</i> <b>49</b>, 1865–1898, (doi:10.1016/S0022-5096(01)00042-4). · Zbl 1093.74512 [2] Spurr, R.T. 1961 A theory of brake squeal. <i>Proc. Inst. Mech. Engrs (Auto. Div.)</i> <b>1</b>, 33–52. [3] Thomas, L. H. 1949 Elliptic problems in linear difference equations over a network. Watson Scientific Computing Laboratory Report. Columbia University, New York. [4] Tolstoi, D.M. 1967 Significance of the normal degree of freedom and natural normal vibrations in contact friction. <i>Wear</i> <b>10</b>, 199–213, (doi:10.1016/0043-1648(67)90004-X). [5] Yi, Y.-B. & Barber, J. R. 2001 HotSpotter: a finite element software package for evaluating the susceptibility of axisymmetric multidisk brakes and clutches to thermoelastic instability (TEI). http://www-personal.engin.umich.edu/jbarber/hotspotter.html. [6] Yi, Y.-B., Barber, J.R. & Zagrodzki, P. 2000 Eigenvalue solution of thermoelastic instability problems using Fourier reduction. <i>Proc. R. Soc. A</i> <b>456</b>, 2799–2821, (doi:10.1098/rspa.2000.0641). · Zbl 1049.74628 [7] Adams, G.G. 1995 Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction. <i>ASME J. Appl. Mech.</i> <b>62</b>, 867–872. · Zbl 0913.73036 [8] Barber, J.R. 1969 Thermoelastic instabilities in the sliding of conforming solids. <i>Proc. R. Soc. A</i> <b>312</b>, 381–394. [9] Barber, J.R., Dundurs, J. & Comninou, M. 1980 Stability considerations in thermoelastic contact. <i>ASME J. Appl. Mech.</i> <b>47</b>, 871–874. · Zbl 0447.73006 [10] Barquins, M., Koudine, A.A. & Vallet, D. 1996 On the existence of Schallamach waves during surface friction in rubber-like material as a function of thickness. <i>Comptes Rendu Mecanique</i> <b>323</b>, 433–438. [11] Ben-Zion, Y. 2001 Dynamic ruptures in recent models of earthquake faults. <i>J. Mech. Phys. Solids</i> <b>49</b>, 2209–2244, (doi:10.1016/S0022-5096(01)00036-9). [12] Burton, R.A., Nerlikar, V. & Kilaparti, S.R. 1973 Thermoelastic instability in a seal-like configuration. <i>Wear</i> <b>24</b>, 177–188, (doi:10.1016/0043-1648(73)90230-5). [13] Ciavarella, M., Johansson, L., Afferrante, L., Klarbring, A. & Barber, J.R. 2003 Interaction of thermal contact resistance and frictional heating in thermoelastic instability. <i>Int. J. Solids Struct.</i> <b>40</b>, 5583–5597, (doi:10.1016/S0020-7683(03)00313-5). · Zbl 1059.74043 [14] Dow, T.A. & Burton, R.A. 1972 Thermoelastic instability of sliding contact in the absence of wear. <i>Wear</i> <b>19</b>, 315–328, (doi:10.1016/0043-1648(72)90123-8). [15] Duffour, P. & Woodhouse, J. 2004 Instability of systems with a frictional point contact. Part 1: basic modelling. <i>J. Sound Vib.</i> <b>271</b>, 365–390, (doi:10.1016/j.jsv.2003.02.002). [16] Dundurs, J. & Stippes, M. 1970 Role of elastic constants in certain contact problems. <i>ASME J. Appl. Mech.</i> <b>37</b>, 965–970. [17] Heckmann, S.R. & Burton, R.A. 1979 Seizure of eccentrically loaded journal bearings and sealing rings. <i>ASME J. Lub. Tech.</i> <b>101</b>, 419–423. [18] Joachim-Ajao, D. & Barber, J.R. 1998 Effect of material properties in certain thermoelastic contact problems. <i>ASME J. Appl. Mech.</i> <b>65</b>, 889–893. [19] Johnson, K.L. 2001 Dynamic friction. <i>Tribology research: from model experiment to industrial problem</i> (eds. Dalmaz, G. Lubrecht, A.A. Dowson, D. & Priest, M.), pp. 37–45, Amsterdam: Elsevier [20] Kinkaid, N.M., O’Reilly, O.M. & Papaclopoulos, P. 2003 Automotive disc brake squeal. <i>J. Sound Vib.</i> <b>267</b>, 105–166, (doi:10.1016/S0022-460X(02)01573-0). [21] Lax, P.D. & Wendroff, B. 1960 Systems of conservation laws. <i>Commun. Pure Appl. Math.</i> <b>13</b>, 217–237. · Zbl 0152.44802 [22] Martins, J.A.C., Oden, J.T. & Simoes, F.M.F. 1990 A study of static and kinetic friction. <i>Int. J. Eng. Sci.</i> <b>28</b>, 29–92, (doi:10.1016/0020-7225(90)90014-A). [23] Martins, J.A.C., Guimaraes, J. & Faria, L.O. 1995 Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions. <i>J. Vib. Acoust.</i> <b>117</b>, 445–451. [24] Moirot, F. & Nguyen, Q.S. 2000 Brake squeal: a problem of flutter instability of the steady sliding solution?. <i>Arch. Mech.</i> <b>52</b>, 645–662. · Zbl 1010.74030 [25] Popp, K. & Rudolph, M. 2004 Vibration control to avoid stick-slip motion. <i>J. Vib. Control</i> <b>10</b>, 1585–1600, (doi:10.1177/1077546304042026). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.