×

Parallel implementation for some applications of integral equations method. (English) Zbl 1483.65211

Summary: In this article authors analyse the specifics of parallel implementation of numericalmethods based on integral equations. The necessity to create original parallel subroutines implementing fast matrix algorithms for efficient work with big dense matrices is stressed out. Specifics of parallel algorithms and calculating capabilities of integral equations method for some aerodynamics and electrodynamics problems are shown.

MSC:

65R20 Numerical methods for integral equations
45L05 Theoretical approximation of solutions to integral equations
65Y05 Parallel numerical computation
76M23 Vortex methods applied to problems in fluid mechanics

Software:

ScaLAPACK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Tyrtyshnikov, E. E., Mosaic-skeleton approximations, Calcolo, 33, 47-57, (1996) · Zbl 0906.65048 · doi:10.1007/BF02575706
[2] L. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley, ScaLAPACK Users’ Guide (SIAM, Philadelphia, 1997). · Zbl 0886.65022 · doi:10.1137/1.9780898719642
[3] S. L. Stavtsev and E. E. Tyrtyshnikov, “Application of mosaic-skeleton approximations for solving EFIE,” in Proceedings of Progress in Electromagnetics Research Symposium, 2009, pp. 1752-1755. · Zbl 1341.78020
[4] S. L. Stavtsev, “Block LU preconditioner for the electric field integral equation,” in Proceedings of Progress in Electromagnetics Research Symposium, 2015, pp. 1523-1527. · Zbl 1328.76018
[5] Tyrtyshnikov, E. E., Incomplete cross approximation in the mosaic skeleton method, Computing, 64, 367-380, (2000) · Zbl 0964.65048 · doi:10.1007/s006070070031
[6] Aparinov, A. A.; Setukha, A. V.; Zhelannikov, A. I., Numerical simulation of separated flow over threedimensional complex shape bodies with some vortex method, AIP Conf. Proc., 1629, 69-76, (2014) · doi:10.1063/1.4902260
[7] Kiryakin, V. Yu.; Setukha, A. V., On the convergence of a vortical numerical method for three-dimensional Euler equations in Lagrangian coordinates, Differ. Equat., 43, 1295-1310, (2007) · Zbl 1278.76081 · doi:10.1134/S0012266107090133
[8] Aparinov, A. A.; Setukha, A. V., On the application of mosaic-skeleton approximations of matrices for the acceleration of computations in the vortex method for the three-dimensional Euler equations, Differ. Equat., 45, 1358-1369, (2009) · Zbl 1342.76093 · doi:10.1134/S0012266109090110
[9] Saad, Y. M.; Schultz, H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[10] Savostjanov, D. V.; Tyrtyshnikov, E. E., Application of multilevel structured matrices for the solution of direct and inverse electromagnetic problems, Vychisl. Metody Programmir., 7, 1-16, (2006)
[11] Aparinov, A.; Setukha, A.; Stavtsev, S., Supercomputer modelling of electromagnetic wave scattering with boundary integral equation method, Commun. Comput. Inform. Sci., 793, 325-336, (2017) · doi:10.1007/978-3-319-71255-0_26
[12] Aparinov, A. A.; Setukha, A. V., Parallelization in the vortex method for solving aerodynamic problems, Vychisl. Metody Programmir., 14, 406-418, (2013)
[13] Stavtsev, S. L., Application of the method of incomplete cross approximation to a nonstationary problem of vortex rings dynamics, Russ. J. Numer. Anal.Math. Modell., 27, 303-320, (2012) · Zbl 1328.76018 · doi:10.1515/rnam-2012-0017
[14] Zakharov, E. V.; Setukha, A. V.; Bezobrazova, E. N., Method of hypersingular integral equations in a three-dimensional problem of diffraction of electromagnetic waves on a piecewise homogeneous dielectric body, Differ. Equat., 51, 1197-1210, (2015) · Zbl 1341.78020 · doi:10.1134/S0012266115090098
[15] J. L. Volakis and K. Sertel, Integral Equation Methods for Electromagnetics (SciTech, Raleigh, NC, 2012). · doi:10.1049/SBEW045E
[16] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.