×

Enhanced quantile normalization of microarray data to reduce loss of information in gene expression profiles. (English) Zbl 1206.62168

Summary: In microarray experiments, removal of systematic variations resulting from array preparation or sample hybridization conditions is crucial to ensure sensible results from the ensuing data analysis. For example, quantile normalization is routinely used in the treatment of both oligonucleotide and cDNA microarray data, even though there might be some loss of information in the normalization process. We recognize that the ideal normalization, if it ever exists, would aim to keep the maximal amount of gene profile information with the lowest possible noise. With this objective in mind, we propose a valuable enhancement to quantile normalization, and demonstrate through three Affymetrix experiments that the enhanced normalization can result in better performance in detecting and ranking differentially expressed genes across experimental conditions.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
92C40 Biochemistry, molecular biology

Software:

affy; R
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benjamini, Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, Series B 57 pp 289– (1995) · Zbl 0809.62014
[2] Bolstad, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics 19 pp 185– (2003) · doi:10.1093/bioinformatics/19.2.185
[3] Cope, A benchmark for Affymetrix geneChip expression measures, Bioinformatics 1 pp 1– (2004)
[4] Fan , J. Chen , Y. Chan , H. M. Tam , P. K. H. Ren , Y. 2005 Removing intensity effects and identifying significant genes for Affymetrix arrays in MIF-suppressed neuroblastoma cells Proceedings of the National Academy of Sciences USA 102 17751 17756
[5] Gautier, Affy-analysis of Affymetrix GeneChip data at the probe level, Bioinformatics 20 pp 307– (2004) · doi:10.1093/bioinformatics/btg405
[6] Holter , N. S. Mitra , M. Maritan , A. Cieplak , M. Banavar , J. R. Fedoroff , N. V. 2000 Fundamental patterns underlying gene expression profiles: Simplicity from complexity Proceedings of the National Academy of Sciences USA 97 8409 8414
[7] Irizarry, Summaries of Affymetrix geneChip probe level data, Nucleic Acids Research 31 pp e15– (2003) · doi:10.1093/nar/gng015
[8] Lemon, Theoretical and experimental comparisons of gene expression indexes for oligonucleotide arrays, Bioinformatics 18 pp 1470– (2002) · doi:10.1093/bioinformatics/18.11.1470
[9] Li , C. Wong , W. H. 2001 Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection Proceedings of the National Academy of Sciences USA 98 31 36 · Zbl 0990.62091
[10] Lockhart, Expression monitoring by hybridization to high-density oligonucleotide arrays, Nature Biotechnology 14 pp 1675– (1996) · doi:10.1038/nbt1296-1675
[11] Lyons-Weiler, Profound normalisation challenges remain in the analysis of data from microarray experiments, Applied Bioinformatics 2 pp 193– (2003)
[12] R Development Core Team, R: A Language and Environment for Statistical Computing (2005)
[13] Schadt, Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data, Journal of Cellular Biochemistry 84 (suppl. 37) pp 120– (2002)
[14] Sidorov, Oligonucleotide microarray data distribution and normalization, Information Sciences 146 pp 65– (2002) · doi:10.1016/S0020-0255(02)00215-3
[15] Storey, The positive false discovery rate: A Bayesian interpretation and the q-value, Annals of Statistics 31 pp 2013– (2003) · Zbl 1042.62026 · doi:10.1214/aos/1074290335
[16] Tseng, Regenerated mdx mouse skeletal muscle shows differential mRNA expression, Journal of Applied Physiology 93 pp 537– (2002) · doi:10.1152/japplphysiol.00202.2002
[17] Tusher , V. G. Tibshirani , R. Chu , G. 2001 Significance analysis of microarrays applied to the ionizing radiation response Proceedings of the National Academy of Sciences USA 98 5116 5121 · Zbl 1012.92014
[18] Workman, A new non-linear normalization method for reducing variability in DNA microarray experiments, Genome Biology 3 (2002) · doi:10.1186/gb-2002-3-9-research0048
[19] Yang, Science and Statistics: A Festschrift for Terry Speed 40 pp 403– (2003) · doi:10.1214/lnms/1215091155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.