×

Computing volume of the heart’s right ventricle using 2D echocardiography images. (English) Zbl 1488.92004

Summary: This paper presents a new way for computing the volume of the heart’s right ventricle. The technique involves manual marking of three critical contours of the ventricle’s regions on 2D echocardiography images. The contours are then deformed semi-automatically to keep them orthogonal and concurrent in four-chamber plane, transverse (short-axis) plane, and lateral plane. The ventricle’s surface is generated and its volume computed automatically. The proposed model was validated by comparing its estimate with actual measurements using 3D echocardiography imaging.

MSC:

92-10 Mathematical modeling or simulation for problems pertaining to biology
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
92C55 Biomedical imaging and signal processing

Software:

ITK; VTK
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R.H. Bartels, J.C. Beatty and B.A. Barsky. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling. Morgan Kaufmann, 1987. · Zbl 0682.65003
[2] E. Catmull and R. Rom. A class of local interpolating splines. In R. Barnhill and R. Riesenfeld (Eds.), Comput. Aided Geom. Design, pp. 317-326. Academic Press, 1974. · doi:10.1016/B978-0-12-079050-0.50020-5
[3] Y.-T. Ching, Y.-H. Liu, C.-L. Chang and J.S.J. Chen. Almost automatic method for reconstruction 3D geometric model of the left ventricle from 3D + 1D precor-dial echocardiogram. Journal of Medical and Biological Engineering, 21(2):127-133, 2001.
[4] R. Cipolla and A. Blake. Surface shape from the deformation of apparent contours. International Journal of Computer Vision, 9(2):83-112, 1992. http://dx.doi.org/10.1007/BF00129682. · doi:10.1007/BF00129682
[5] L.L. Creswell, S.G. Wyers, J.S. Pirolo, W.H. Perman, M.W. Vannier and M.K. Pasque. Mathematical modeling of the heart using magnetic resonance imaging. Medical Imaging, IEEE Transactions on, 11(4):581-589, 1992. · doi:10.1109/42.192695
[6] VTK User’s Guide. Kitware, Inc. 11 edition, 2010.
[7] A.A. Harouni, D.A. Bluemke and N.F. Osman. Fully automated segmentation of long-axis MRI Strain-Encoded (SENC) images using active shape model (ASM). In Biomedical Imaging: From Nano to Macro, 2009. ISBI ’09. IEEE International Symposium on, pp. 827-830, 2009. · doi:10.1109/ISBI.2009.5193180
[8] K.D. Horton, R.W. Meece and J.C. Hill. Assessment of the right ventricle by echocardiography: a primer for cardiac sonographers. J Amer. Soc. Echocardiogr, 22(7):776-92; quiz 861-2, 2009. http://dx.doi.org/10.1016/j.echo.2009.04.027. · doi:10.1016/j.echo.2009.04.027
[9] L. Ibanez and W. Schroeder. The ITK Software Guide. Kitware, Inc, 2005.
[10] J. Kjaergaard, C.L. Petersen, A. Kjaer, B.K. Schaadt, J.K. Oh and C. Hassager. Evaluation of right ventricular volume and function by 2D and 3D echocardiography compared to MRI. EHJ Cardiovascular Imaging, 7(6):430-438, 2006. http://dx.doi.org/10.1016/j.euje.2005.10.009.
[11] E. Kreyszig. Advanced Engineering Mathematics. Wiley, 10 edition, 2011. · Zbl 1229.00004
[12] R. Kurazume, K. Nakamura, T. Okada, Y. Sato, N. Sugano, T. Koyama, Y. Iwashita and T. Hasegawa. 3D reconstruction of a femoral shape using a parametric model and two 2D fluoroscopic images. In Robotics and Automation, 2007 IEEE International Conference on, pp. 3002-3008, 2007.
[13] R.M. Lang, M. Bierig, R.B. Devereux, F.A. Flachskampf, E. Foster, P.A. Pellikka, M.H. Picard, M.J. Roman, J. Seward, J.S. Shanewise, S.D. Solomon, K.T. Spencer, M.St. John Sutton and W.J. Stewart. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J. Amer. Soc. Echocardiogr, 18(12):1440-1463, 2005. http://dx.doi.org/10.1016/j.echo.2005.10.005. · doi:10.1016/j.echo.2005.10.005
[14] M. Matačiūnas, D. Zakarkaitè, I. Zeleckienè, D. Palionis, N. Valevičienè, A. Ušinskas and A. Tamošiūnas. Tomographic volumetry of the right ventricle: redundancy of technologies or inescapable necessity for a multimodality approach? Seminars in Cardiovascular Medicine, 17: 2011.
[15] L. Mockus, M. Meilūnas, M. Paulinas, A. Ušinskas and D. Zakarkaitė. Generating of reformat slices in neural and cardio-tomography. Math. Model. Anal., 12(1):121-130, 2007. http://dx.doi.org/10.3846/1392-6292.2007.12.121-130. · Zbl 1127.68478
[16] S. Nandagopalan, B.S. Adiga, C. Dhanalakshmi and N. Deepak. Automatic segmentation and ventricular border detection of 2D echocardiographic images combining k-means clustering and active contour model. In Computer and Network Technology (ICCNT), 2010 Second International Conference on, pp. 447-4512010.
[17] M. Paulinas. Segmentation and analysis of medical computer tomograms. PhD thesis, Vilnius Gediminas Technical University, Lithuania, 2010.
[18] M. Paulinas and M. Meilūnas. An algorithm for partitioning of right heart ventricle medial axis. Math. Model. Anal., 15(2):245-255, 2010. http://dx.doi.org/10.3846/1392-6292.2010.15.245-255. · Zbl 1203.65048
[19] S. Prakoonwit and R. Benjamin. 3D surface reconstruction from multiview photographic images using 2D edge contours. 3D Research, 3(4):1-12, 2012. · doi:10.1007/3DRes.04(2012)6
[20] F. Rademakers. Echocardiographic volumetry of the right ventricle. Eur. J. Echocardiography, 6(1):4-6, 2005. http://dx.doi.org/10.1016/j.euje.2004.11.008. · doi:10.1016/j.euje.2004.11.008
[21] I.J. Schoenberg. Cardinal Spline Interpolation. SIAM, 1973. · Zbl 0264.41003 · doi:10.1137/1.9781611970555
[22] A. Skalski and P. Turcza. Heart segmentation in echo images. Metrology and Measurement Systems, 18(2):305-314, 2011. http://dx.doi.org/10.2478/v10178-011-0012-y. · doi:10.2478/v10178-011-0012-y
[23] A. Szymczak, W. Hoff and M. Mahfouz. 3D shape from silhouette points in registered 2D images using conjugate gradient method. Proc. SPIE, 7623:762316-762316, 2010. · doi:10.1117/12.843885
[24] D. Turco, C. Corsi and C. Lamberti. Fully automated quantification of left and right ventricular volumes throughout the cardiac cycle from magnetic resonance imaging. In Computing in Cardiology, 2011, pp. 377-380, 2011.
[25] A. Usinskas, M. Paulinas, M. Meilūnas, M. Mataciunas, D. Zakarkaite, I. Zeleckiene, A. Laucevicius. Computing of right ventricle volume using orthogonal contours. Electronics and Electrical Engineering, 9:83-86, 2011.
[26] K.-Y. Wong and R. Cipolla. Reconstruction of sculpture from its profiles with unknown camera positions. Image Processing, IEEE Transactions on, 13(3):381-389, 2004. · doi:10.1109/TIP.2003.821113
[27] P.A. Yushkevich, J. Piven, H.C. Hazlett, R.G. Smith, S. Ho, J.C. Gee and G. Gerig. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage, 31(3):1116-1128, 2006. http://dx.doi.org/10.1016/j.neuroimage.2006.01.015. · doi:10.1016/j.neuroimage.2006.01.015
[28] D. Zhang and X. Wu. An edge-guided image interpolation algorithm via directional filtering and data fusion, Image Processing. IEEE Transactions on, 15(8):2226-2238, 2006.
[29] C. Zhao and R. Mohr. Global three dimensional surface reconstruction from occluding contours. Computer Vision and Image Understanding, 64:62-96, 1994. http://dx.doi.org/10.1006/cviu.1996.0046. · doi:10.1006/cviu.1996.0046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.