×

A dynamic load balancing method for the evaluation of chemical reaction rates in parallel combustion simulations. (English) Zbl 1496.80008

Summary: The development and assessment of an efficient parallelization method for the evaluation of reaction rates in combustion simulations is presented. Combustion simulations where the finite-rate chemistry model is employed are computationally expensive. In such simulations, a transport equation for each species in the chemical reaction mechanism has to be solved, and the resulting system of equations is typically stiff. As a result, advanced implicit methods must be applied to obtain accurate solutions using reasonable time-steps at expenses of higher computational resources than explicit or classical implicit methods. In the present work, a new algorithm aimed to enhance the numerical performance of the time integration of stiff systems of equations in parallel combustion simulations is presented. The algorithm is based on a runtime load balancing mechanism, increasing noteworthy the computational performance of the simulations, and consequently, reducing significantly the computer time required to perform the numerical combustion studies.

MSC:

80A25 Combustion
80A30 Chemical kinetics in thermodynamics and heat transfer
80A32 Chemically reacting flows
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76M20 Finite difference methods applied to problems in fluid mechanics
76V05 Reaction effects in flows
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Janicka, J.; Sadiki, A., Large eddy simulation of turbulent combustion systems, Proc Combust Inst, 30, 1, 537-547 (2005)
[2] Bilger, R. W.; Pope, S.; Bray, K. N.C.; Driscoll, J. F., Paradigms in turbulent combustion research, Proc Combust Inst, 30, 21-42 (2005)
[3] Pitsch, H., Large-eddy simulation of turbulent combustion, Annu Rev Fluid Mechs, 38, 1, 453-482 (2006) · Zbl 1097.76042
[4] Veynante, D.; Vervisch, L., Turbulent combustion modeling, Prog Energy Combust Sci, 28, 3, 193-266 (2002)
[5] Poinsot, T.; Veynante, D., Theoretical and numerical combustion (2005), RT Edwards, Inc.
[6] Perini, F.; Galligani, E.; Reitz, R. D., An analytical jacobian approach to sparse reaction kinetics for computationally efficient combustion modeling with large reaction mechanisms, Energy Fuels, 26, 8, 4804-4822 (2012)
[7] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving ordinary differential equations ii: stiff and differential-algebraic problems (1993), Springer
[8] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical recipes 3rd edition: the art of scientific computing (2007), Cambridge University Press · Zbl 1132.65001
[9] Velghe, A.; Gillet, N.; Bohbot, J., A high efficiency parallel unstructured solver dedicated to internal combustion engine simulation, Comput. Fluids, 45, 1, 116-121 (2011) · Zbl 1429.76022
[10] Torres, D. J.; Li, Y. H.; Kong, S.-C., Partitioning strategies for parallel KIVA-4 engine simulations, Comput. Fluids, 39, 2, 301-309 (2010) · Zbl 1242.76291
[11] Torres, D. J.; Trujillo, M. F., Kiva-4: an unstructured ALE code for compressible gas flow with sprays, J. Comput. Phys., 219, 2, 943-975 (2006) · Zbl 1330.76105
[12] Thévenin, D.; Behrendt, F.; Maas, U.; Przywara, B.; Warnatz, J., Development of a parallel direct simulation code to investigate reactive flows, Comput. Fluids, 25, 5, 485-496 (1996) · Zbl 0900.76349
[13] Shi, Y.; Green, W. H.; Wong, H.-W.; Oluwole, O. O., Accelerating multi-dimensional combustion simulations using GPU and hybrid explicit/implicit ODE integration, Combust. Flame, 159, 7, 2388-2397 (2012)
[14] Gabriel, E.; Fagg, G. E.; Bosilca, G.; Angskun, T.; Dongarra, J. J.; Squyres, J. M., Open MPI: goals, concept, and design of a next generation MPI implementation, Proceedings, 11th European PVM/MPI Users’ Group Meeting, 97-104 (2004)
[15] Stroustrup, B., The C++ programming language (2013), Addison-Wesley Professional
[16] Gear, C. W., Numerical initial value problems in ordinary differential equations (1971), Prentice Hall PTR: Prentice Hall PTR Upper Saddle River, NJ, USA · Zbl 1145.65316
[17] Markides, C. N.; Mastorakos, E., An experimental study of hydrogen autoignition in a turbulent co-flow of heated air, Proc Combust Inst, 30, 1, 883-891 (2005)
[18] Favre, A., Turbulence - space-time statistical properties and behavior in supersonic flows, Phys Fluids, 26, 2851-2863 (1983) · Zbl 0524.76069
[19] Sagaut, P., Large eddy simulation for incompressible flows: an introduction (2006), Springer · Zbl 1091.76001
[20] Ventosa-Molina, J.; Chiva, J.; Lehmkuhl, O.; Muela, J.; Pérez-Segarra, C. D.; Oliva, A., Numerical analysis of conservative unstructured discretisations for low mach flows, Int J Numer MethodsFluids, 84, 6, 309-334 (2017)
[21] Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., et al. GRI-Mech 3.0. http://www.me.berkeley.edu/gri-mech/; Smith G.P., Golden D.M., Frenklach M., Moriarty N.W., Eiteneer B., Goldenberg M., et al. GRI-Mech 3.0. http://www.me.berkeley.edu/gri-mech/
[22] de Lange, H. C.; de Goey, L. P.H., Two-dimensional methane/air flame, Combust Sci Technol, 92, 4-6, 423-427 (1993)
[23] Mueller, M. A.; Kim, T. J.; Yetter, R. A.; Dryer, F. L., Flow reactor studies and kinetic modeling of the H2/O2 reaction, Int J Chem Kinet, 31, 2, 113-125 (1999)
[24] Miller, J. A.; Kee, R. J., Chemical nonequilibrium effects in hydrogen-air laminar jet diffusion flames, J Phys Chem, 81, 25, 2534-2542 (1977)
[25] Kee, R. J.; Miller, J. A., A split-operator, finite-difference solution for axisymmetric laminar-jet biffusion flames, AIAA J, 16, 2, 169-176 (1978) · Zbl 0377.76035
[26] Vos, J. B., Calculating turbulent reacting flows using finite chemical kinetics, AIAA J, 25, 10, 1365-1372 (1987)
[27] Coelho, P. J.; Pereira, J. C.F., Calculation of a confined axisymmetric laminar diffusion flame using a local grid refinement technique, Combust Sci Technol, 92, 4-6, 243-264 (1993)
[28] Holm-Christensen, O.; Jones, I. P.; Wilkes, N. S.; Splawski, B. A.; Stopford, P. J., The solution of coupled flow and chemistry problems, Prog Comput Fluid DynInt J, 1, 1-3, 43-49 (2001)
[29] Cònsul, R.; Pérez-segarra, C. D.; Claramunt, K.; Cadafalch, J.; Oliva, A., Detailed numerical simulation of laminar flames by a parallel multiblock algorithm using loosely coupled computers, Combust Theor Model, 7, 3, 525-544 (2003)
[30] Muela, J., Modelling and numerical simulation of combustion and multi-phase flow using finite volume methods on unstructured meshes (2018), Universitat Politècnica de Catalunya
[31] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J Sci Comput, 20, 1, 359-392 (1998) · Zbl 0915.68129
[32] Jofre, L.; Borrell, R.; Lehmkuhl, O.; Oliva, A., Parallel load balancing strategy for volume-of-fluid methods on 3-D unstructured meshes, J. Comput. Phys., 282, 269-288 (2015) · Zbl 1351.76217
[33] Jofre, L.; Lehmkuhl, O.; Castro, J.; Oliva, A., A 3-D volume-of-fluid advection method based on cell-vertex velocities for unstructured meshes, Comput Fluids, 94, 14-29 (2014) · Zbl 1391.76554
[34] MareNostrum IV (2017) System architecture (BSC).https://www.bsc.es/marenostrum/marenostrum/technical-information; MareNostrum IV (2017) System architecture (BSC).https://www.bsc.es/marenostrum/marenostrum/technical-information
[35] Nicoud, F.; Ducros, F., Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow Turbul Combust, 62, 3, 183-200 (1999) · Zbl 0980.76036
[36] Muela, J.; Lehmkuhl, O.; Oliva, A.; Ventosa-Molina, J., Large eddy simulation of hydrogen autoignition in a preheated turbulent co-flow, Proceedings of the 8th mediterranean combustion symposium (MCS8) (2013)
[37] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59, 2, 308-323 (1985) · Zbl 0582.76038
[38] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu Rev Fluid Mech, 37, 239-261 (2005) · Zbl 1117.76049
[39] Jones, W. P.; Navarro-Martinez, S., Study of hydrogen auto-ignition in a turbulent air co-flow using a Large Eddy Simulation approach, Comput. Fluids, 37, 7, 802-808 (2008) · Zbl 1143.76457
[40] Borrell, R.; Chiva, J.; Lehmkuhl, O.; Oyarzun, G.; Rodríguez, I.; Oliva, A., Optimising the Termofluids CFD code for petascale simulations, Int J Comput Fluid Dyn, 30, 6, 425-430 (2016) · Zbl 1497.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.