×

Rational general solutions of systems of first-order algebraic partial differential equations. (English) Zbl 1379.35056

Summary: We study the rational solutions of systems of first-order algebraic partial differential equations and relate them to those of an associated autonomous system. We also describe how rational general solutions of these systems are related, and provide an algorithm in some particular case concerning the dimension of the associated algebraic variety. Our results can be considered as a generalization of the approach by L. X. C.Ngô and F. Winkler on algebraic ordinary differential equations of order one, adapted to systems of first-order algebraic partial differential equations.

MSC:

35F20 Nonlinear first-order PDEs
35A24 Methods of ordinary differential equations applied to PDEs
35A30 Geometric theory, characteristics, transformations in context of PDEs
68W30 Symbolic computation and algebraic computation
35A25 Other special methods applied to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Erdélyi, A., The analytic theory of systems of partial differential equations, Bull. Amer. Math. Soc., 57, 5, 339-353 (1951) · Zbl 0044.09303
[2] Kolchin, E. R., (Differential Algebra and Algebraic Groups. Differential Algebra and Algebraic Groups, Pure and Applied Mathematics, vol. 54 (1973), Academic Press: Academic Press New York-London) · Zbl 0264.12102
[3] Ritt, J. F., (Differential Algebra. Differential Algebra, Colloquium Publications, vol. 33 (1950), American Mathematical Society: American Mathematical Society New York) · Zbl 0037.18501
[4] Hubert, E., The general solution of an ordinary differential equation, (Lakshman, Y. N., Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation. Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation, ISSAC’96 (1996), ACM: ACM New York), 189-195 · Zbl 0919.34002
[5] Robertz, D., Formal Algorithmic Elimination for PDEs (2014), Springer International Publishing: Springer International Publishing Switzerland · Zbl 1339.35007
[6] Feng, R.; Gao, X.-S., Rational general solutions of algebraic ordinary differential equations, (Gutierrez, J., Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation. Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC’04 (2004), ACM: ACM New York), 155-162 · Zbl 1134.34302
[7] Feng, R.; Gao, X.-S., A polynomial time algorithm for finding rational general solutions of first order autonomous ODEs, J. Symbolic Comput., 41, 7, 739-762 (2006) · Zbl 1130.65069
[8] Grasegger, G., Radical solutions of algebraic ordinary differential equations, (Nabeshima, K., Proceedings of the 2014 International Symposium on Symbolic and Algebraic Computation. Proceedings of the 2014 International Symposium on Symbolic and Algebraic Computation, ISSAC’14 (2014), ACM Press: ACM Press New York), 217-223 · Zbl 1325.68283
[9] Grasegger, G.; Winkler, F., Symbolic solutions of first-order algebraic ODEs, (Computer Algebra and Polynomials. Computer Algebra and Polynomials, Lecture Notes in Computer Science, vol. 8942 (2015), Springer International Publishing), 94-104 · Zbl 1434.34019
[10] Ngô, L. X.C.; Winkler, F., Rational general solutions of first order non-autonomous parametrizable ODEs, J. Symbolic Comput., 45, 12, 1426-1441 (2010) · Zbl 1213.34007
[11] Ngô, L. X.C.; Winkler, F., Rational general solutions of planar rational systems of autonomous ODEs, J. Symbolic Comput., 46, 10, 1173-1186 (2011) · Zbl 1235.34004
[12] Ngô, L. X.C.; Winkler, F., Rational general solutions of parametrizable AODEs, Publ. Math., 79, 3-4, 573-587 (2011) · Zbl 1249.34006
[13] Huang, Y.; Ngô, L. X.C.; Winkler, F., Rational general solutions of higher order algebraic ODEs, J. Syst. Sci. Complex., 26, 2, 261-280 (2013) · Zbl 1285.34003
[14] Lastra, A.; Ngô, L. X.C.; Sendra, J. R.; Winkler, F., Rational general solutions of systems of autonomous ordinary differential equations of algebro-geometric dimension one, Publ. Math., 86, 1-2, 49-69 (2015) · Zbl 1349.12002
[15] Huang, Y.; Ngô, L. X.C.; Winkler, F., Rational general solutions of trivariate rational differential systems, Math. Comput. Sci., 6, 4, 361-374 (2012) · Zbl 1277.68302
[16] Grasegger, G.; Lastra, A.; Sendra, J. R.; Winkler, F., A solution method for autonomous first-order algebraic partial differential equations, J. Comput. Appl. Math., 300, 119-133 (2016) · Zbl 1348.68301
[17] Kalkbrener, M., Prime decompositions of radicals in polynomial rings, J. Symbolic Comput., 18, 4, 365-372 (1994) · Zbl 0832.13020
[18] Boulier, F.; Lazard, D.; Ollivier, F.; Petitot, M., Representation for the radical of a finitely generated differential ideal, (Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation. Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ISSAC’95 (1995), ACM: ACM New York) · Zbl 0911.13011
[19] Hubert, E., Factorization-free decomposition algorithms in differential algebra, J. Symbolic Comput., 29, 4-5, 641-662 (2000) · Zbl 0984.12004
[20] Golubitsky, O., Gröbner fan and universal characteristic sets of prime differential ideals, J. Symbolic Comput., 41, 10, 1091-1104 (2006) · Zbl 1158.12302
[21] Wu, W., On the foundation of algebraic differential geometry, Syst. Sci. Math. Sci., 2, 4, 289-312 (1989) · Zbl 0739.14001
[22] Boulier, F.; Lazard, D.; Ollivier, F.; Petitot, M., Computing representations for radicals of finitely generated differential ideals, Appl. Algebra Eng. Commun. Comput., 20, 1, 73 (2009) · Zbl 1185.12003
[23] Hubert, E., Notes on Triangular Sets and Triangulation-Decomposition Algorithms II: Differential Systems, (Winkler, F.; Langer, U., Symbolic and Numerical Scientific Computation. Symbolic and Numerical Scientific Computation, SNSC 2001. Symbolic and Numerical Scientific Computation. Symbolic and Numerical Scientific Computation, SNSC 2001, Second International Conference (2003), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 40-87 · Zbl 1022.12005
[24] Thomas, J. M., Differential Systems (1937), American Mathematical Society (AMS): American Mathematical Society (AMS) New York · JFM 63.0438.03
[25] Thomas, J. M., Systems and Roots (1962), The William Byrd Prees: The William Byrd Prees Richmond, Virginia
[26] Bächler, T.; Gerdt, V.; Lange-Hegermann, M.; Robertz, D., Algorithmic Thomas decomposition of algebraic and differential systems, J. Symbolic Comput., 47, 10, 1233-1266 (2012) · Zbl 1315.35013
[27] Gianni, P.; Trager, B.; Zacharias, G., Gröbner bases and primary decomposition of polynomial ideals, J. Symbolic Comput., 6, 2-3, 149-167 (1988) · Zbl 0667.13008
[28] Wang, D., Irreducible decomposition of algebraic varieties via characteristic sets and Gröbner bases, Comput. Aided Geom. Design, 9, 471-484 (1992) · Zbl 0776.14014
[29] Cox, D.; Little, J.; O’Shea, D., (Ideals, Varieties, and Algorithms: An Introduction to omputational Algebraic Geometry and Commutative Algebra. Ideals, Varieties, and Algorithms: An Introduction to omputational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics (2007), Springer: Springer New York) · Zbl 1118.13001
[30] Sendra, J. R.; Winkler, F., Symbolic parametrization of curves, J. Symbolic Comput., 12, 607-631 (1991) · Zbl 0759.14044
[31] Schicho, J., Rational parametrization of surfaces, J. Symbolic Comput., 26, 1-9 (1998) · Zbl 0924.14027
[32] Schicho, J., Inversion of birational maps with Gröbner bases, (Buchberger, B.; Winkler, F., Gröbner Bases and Applications (1998), Cambridge University Press: Cambridge University Press Cambridge), 495-503 · Zbl 0936.14011
[33] Sit, W. Y., The Ritt-Kolchin theory for differential polynomials, (Differential Algebra and Related Topics (2002), World Scientific: World Scientific Singapore), 1-70 · Zbl 1011.12007
[34] Kamke, E., Differentialgleichungen: Lösungsmethoden und Lösungen (1997), B.G. Teubner: B.G. Teubner Stuttgart · JFM 68.0179.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.