×

Numerical assessment of stability of interface discontinuous finite element pressure spaces. (English) Zbl 1354.76112

Summary: The stability of two recently developed pressure spaces has been assessed numerically: The space proposed by R. F. Ausas et al. [Comput. Methods Appl. Mech. Eng. 199, No. 17–20, 1019–1031 (2010; Zbl 1227.76025)], which is capable of representing discontinuous pressures, and the space proposed by A. H. Coppola-Owen and R. Codina [Int. J. Numer. Methods Fluids 49, No. 12, 1287–1304 (2005; Zbl 1080.76036)], which can represent discontinuities in pressure gradients. We assess the stability of these spaces by numerically computing the inf-sup constants of several meshes. The inf-sup constant results as the solution of a generalized eigenvalue problems. Both spaces are in this way confirmed to be stable in their original form.{ }An application of the same numerical assessment tool to the stabilized equal-order \(P_{1}\)/\(P_{1}\) formulation is then reported. An interesting finding is that the stabilization coefficient can be safely set to zero in an arbitrary band of elements without compromising the formulation’s stability. An analogous result is also reported for the mini-element \(P_1^+\)/\(P_1\) when the velocity bubbles are removed in an arbitrary band of elements.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics

Software:

SLEPc
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ganesan, S.; Matthies, G.; Tobiska, L., On spurious velocities in incompressible flow problems with interfaces, Comput. Methods Appl. Mech. Engrg., 196, 7, 1193-1202 (2007) · Zbl 1173.76338
[2] R. Rangarajan, A. Lew, Universal meshes: A new paradigm for computing with nonconforming triangulations. Submitted for publications. arxiv.org/abs/1201.4903.; R. Rangarajan, A. Lew, Universal meshes: A new paradigm for computing with nonconforming triangulations. Submitted for publications. arxiv.org/abs/1201.4903. · Zbl 1352.65617
[3] Gross, S.; Reusken, A., Finite element discretization error analysis of a surface tension force in two-phase incompressible flows, SIAM J. Numer. Anal., 45, 1679-1700 (2007) · Zbl 1141.76037
[4] Gross, S.; Reusken, A., An extended pressure finite element space for two-phase incompressible flows with surface tension, J. Comput. Phys., 224, 40-58 (2007) · Zbl 1261.76015
[5] Reusken, A., Analysis of an extended pressure finite element space for two-phase incompressible flows, Comput. Visual. Sci., 11, 293-305 (2008) · Zbl 1522.76044
[6] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int. J. Numer. Methods Engrg., 50, 993-1013 (2001) · Zbl 0981.74062
[7] Minev, P. D.; Chen, T.; Nandakumar, K., A finite element technique for multifluid incompressible flow using Eulerian grids, J. Comput. Phys., 187, 225-273 (2003) · Zbl 1047.76047
[8] Coppola-Owen, A. H.; Codina, R., Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49, 1287-1304 (2005) · Zbl 1080.76036
[9] Ausas, R. F.; Sousa, F. S.; Buscaglia, G. C., An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Engrg., 199, 1019-1031 (2010) · Zbl 1227.76025
[10] Arnold, D.; Brezzi, F.; Fortin, M., A stable finite element for the Stokes equations, Calcolo, 21, 337-344 (1984) · Zbl 0593.76039
[11] Hughes, T. J.R.; Franca, L.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition. A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. Methods Appl. Mech. Engrg., 59, 85-99 (1986) · Zbl 0622.76077
[12] Franca, L.; Hughes, T. J.R., Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg., 69, 89-129 (1988) · Zbl 0629.73053
[13] Buscaglia, G. C.; Agouzal, A., Interpolation estimate for a finite-element space with embedded discontinuities, IMA J. Numer. Anal., 32, 672-686 (2011) · Zbl 1253.65174
[14] Stenberg, R., A technique for analysing finite element methods for viscous incompressible flow, Int. J. Numer. Methods Fluids, 11, 935-948 (1990) · Zbl 0704.76017
[15] Malkus, D. S., Eigenproblems associated with the discrete LBB condition for incompressible finite elements, Int. J. Engrg. Sci., 19, 1299-1310 (1981) · Zbl 0457.73051
[16] Huerta, A.; Vidal, Y.; Villon, P., Pseudo-divergence-free element free Galerkin method for incompressible fluid flow, Comput. Methods Appl. Mech. Engrg., 193, 12-14, 1119-1136 (2004) · Zbl 1060.76626
[17] Bänsch, E., Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numer. Math., 88, 203-235 (2001) · Zbl 0985.35060
[18] Buscaglia, G.; Ausas, R., Variational formulations for surface tension capillarity and wetting, Comput. Methods Appl. Mech. Engrg., 200, 3011-3025 (2011) · Zbl 1230.76047
[19] Ern, A.; Guermond, J-L., Theory and Practice of Finite Elements (2004), Springer · Zbl 1059.65103
[20] Babuška, I., The finite element method with Lagrangian multipliers, Numer. Math., 20, 179-192 (1973) · Zbl 0258.65108
[21] Brezzi, F., On the existence uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Anal. Numér., 8, 129-151 (1974) · Zbl 0338.90047
[22] Sousa, F. S.; Ausas, R. F.; Buscaglia, G. C., Improved interpolants for discontinuous pressures, Mecánica Comput., 28, 1131-1148 (2009)
[23] Fernández, V.; Román, J. E.; Vidal, V., SLEPc: scalable library for eigenvalue problem computations, Lecture Notes Comput. Sci., 2565, 377-391 (2003) · Zbl 1027.65504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.