×

Robust filtering circuit design for stochastic gene networks under intrinsic and extrinsic molecular noises. (English) Zbl 1130.92023

Summary: How to design a robust gene network to tolerate more intrinsic kinetic parameter variations and to attenuate more extrinsic environmental noises to achieve a desired filtering level will be an important topic for systems biology and synthetic biology. At present, there is no good systematic design method to achieve robust gene network designs. In this study, a gene network suffering from intrinsic kinetic parameter fluctuations and extrinsic environmental noises is modeled as a Langevin equation with state-dependent stochastic noises. Based on nonlinear stochastic filtering theory, a systematic gene circuit design method is proposed to make gene networks improve their robustness to tolerate more intrinsic noises and to attenuate extrinsic noises to a prescribed filtering level. The robust gene network design principles have not only yielded a comprehensive design theory of robust gene networks, but also gained valuable insights into the molecular noise filtering of gene networks from a systematic perspective.

MSC:

92C40 Biochemistry, molecular biology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barkai, N.; Leibler, S., Robustness in simple biochemical networks, Nature, 387, 913 (1997)
[2] Alon, U.; Surette, M. G.; Barkai, N.; Leibler, S., Robustness in bacterial chemotaxis, Nature, 397, 168 (1999)
[3] Becskei, A.; Serrano, L., Engineering stability in gene networks by autoregulation, Nature, 405, 590 (2000)
[4] Carlson, J. M.; Doyle, J., Highly optimized tolerance: robustness and design in complex systems, Phys. Rev. Lett., 84, 2529 (2000)
[5] Gardner, T. S.; Cantor, C. R.; Collins, J. J., Construction of a genetic toggle switch in Escherichia coli, Nature, 403, 339 (2000)
[6] Wang, F.; Raab, R. M.; Washabaugh, M. W.; Buckland, B. C., Gene therapy and metabolic engineering, Metab. Eng., 2, 126 (2000)
[7] Becskei, A.; Seraphin, B.; Serrano, L., Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion, EMBO J., 20, 2528 (2001)
[8] Kitano, H., Systems biology: a brief overview, Science, 295, 1662 (2002)
[9] Kitano, H., Computational systems biology, Nature, 420, 206 (2002)
[10] Gu, Z.; Steinmetz, L. M.; Gu, X.; Scharfe, C.; Davis, R. W.; Li, W. H., Role of duplicate genes in genetic robustness against null mutations, Nature, 421, 63 (2003)
[11] Kitano, H., Biological robustness, Nat. Rev. Genet., 5, 826 (2004)
[12] Chen, B. S.; Wang, Y. C.; Wu, W. S.; Li, W. H., A new measure of the robustness of biochemical networks, Bioinformatics, 21, 2698 (2005)
[13] Arkin, A.; Ross, J.; McAdams, H. H., Stochastic kinetic analysis of developmental pathway bifurcation in phase \(λ\)-infected Escherichia coli cells, Genetics, 149, 1633 (1998)
[14] McAdams, H. H.; Arkin, A., It’s a noisy business! Genetic regulation at nanomolar scale, Trends Genet., 15, 65 (1999)
[15] Thattai, M.; Van Oudenaaraen, A., Intrinsic noise in gene regulatory network, Proc. Natl. Acad. Sci. USA, 98, 8614 (2001)
[16] McAdams, H. H.; Arkin, A., Stochastic mechanisms in gene expression, Proc. Natl. Acad. Sci. USA, 94, 814 (1997)
[17] Rao, C. V.; Wolf, D. M.; Arkin, A. P., Control, exploitation and tolerance of intracellular noise, Nature, 420, 231 (2002)
[18] Blake, W. J.; KAern, M.; Cantor, C. R.; Collins, J. J., Noise in eukaryotic gene expression, Nature, 422, 633 (2003)
[19] Yi, T. M.; Huang, Y.; Simon, M. I.; Doyle, J., Robust perfect adaptation in bacterial chemotaxis through feedback control, Proc. Natl. Acad. Sci. USA, 97, 4649 (2000)
[20] Hasty, J.; Isaacs, F.; Dolnik, M.; McMillen, D.; Collins, J. J., Designer gene networks: towards fundamental cellular control, Chaos, 11, 207 (2001) · Zbl 1029.92011
[21] Hasty, J.; McMillen, D.; Collins, J. J., Engineered gene circuits, Nature, 420, 224 (2002)
[22] Arkin, A., Signal processing by biochemical reaction networks, (Walleczek, J., Self-Organized Biological Dynamics and Nonlinear Control: Toward Understanding Complexity. Self-Organized Biological Dynamics and Nonlinear Control: Toward Understanding Complexity, Chaos and Emergent Function in Living Systems (2000), Cambridge University: Cambridge University London), 112
[23] Isaacs, F. J.; Hasty, J.; Cantor, C. R.; Collins, J. J., Prediction and measurement of an autoregulatory genetic module, Proc. Natl. Acad. Sci. USA, 100, 7714 (2003)
[24] Zhang, W.; Chen, B. S.; Tseng, C. S., Robust H∞ filtering for nonlinear stochastic systems, IEEE Trans. Signal Process., 53, 589 (2005) · Zbl 1370.93293
[25] Zhang, W.; Chen, B. S., \(H_∞\) control for nonlinear stochastic systems, SIAM J. Control Optim., 44, 1973 (2006) · Zbl 1157.93019
[26] Paulsson, J.; Berg, O. G.; Ehrenberg, M., Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation, Proc. Natl. Acad. Sci., 97, 7148 (2000)
[27] Heinrich, R.; Schuster, S., The Regulation of Cellular Systems (1996), Chapman and Hall: Chapman and Hall New York · Zbl 0895.92013
[28] Hasty, J.; Pradines, J.; Dolnik, M.; Collins, J. J., Noise-based switches and amplifiers for gene expression, Proc. Natl. Acad. Sci. USA, 97, 2075 (2000)
[29] Kaern, M.; Elston, T. C.; Blake, W. J.; Collins, J. J., Stochasticity in gene expression: from theories to phenotypes, Nat. Rev. Genet., 6, 451 (2005)
[30] Chen, B. S.; Wang, Y. C., On the attenuation and amplification of molecular noise in genetic regulatory networks, BMC Bioinformatics, 7, 52 (2006)
[31] Varner, J.; Ramkrishna, D., Metabolic engineering from a cybentic perspective, Biotechnol. Prog., 15, 407 (1999)
[32] Tegner, J.; Yeung, M. K.; Hasty, J.; Collins, J. J., Reverse engineering gene networks: integrating genetic perturbations with dynamic modeling, Proc. Natl. Acad. Sci. USA, 100, 5944 (2003)
[33] Patil, K. R.; Rocha, I.; Forster, J.; Nielsen, J., Evolutionary programming as a platform for in silico metabolic engineering, BMC Bioinformatics, 6, 308 (2005)
[34] Pharkya, P.; Burgard, A. P.; Maranas, C. D., OptStrain: a computational framework for redesign of microbial production systems, Genome Res., 14, 2367 (2004)
[35] Elowitz, M. B.; Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 403, 335 (2000)
[36] Bulter, T.; Lee, S. G.; Wong, W. W.; Fung, E.; Connor, M. R.; Liao, J. C., Design of artificial cell communication using gene and metabolic networks, Proc. Natl. Acad. Sci. USA, 101, 2299 (2004)
[37] Savageau, M. A., Design principles for elementary gene circuits: elements, methods, and examples, Chaos, 11, 142 (2001) · Zbl 1020.92021
[38] Csete, M. E.; Doyle, J. C., Reverse engineering of biological complexity, Science, 295, 1664 (2002)
[39] Voit, E. O., Design principles and operating principles: the yin and yang of optimal functioning, Mathematical Bioscience, 182, 81 (2003) · Zbl 1012.92013
[40] Butcher, E. C.; Berg, E. L.; Kunkel, E. J., System biology in drug discovery, Nat. Biotechnol., 22, 1253 (2004)
[41] Boyd, S.; Ghaui, L. E.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory (1993), SIAM: SIAM Philadelphia, PA
[42] Gahinet, P.; Nemirovskii, A.; Laub, A. J.; Chilali, M., LMI Control Toolbox For Use with Matlab (1995), The MathWorks Inc.
[43] Voit, E. O., Computational Analysis of Biochemical Systems (2000), Cambridge University: Cambridge University Cambridge
[44] Klipp, E.; Herwig, R.; Kowald, A.; Wierling, C.; Leharch, H., Systems Biology in Practice: Concepts, Implementation and Application (2005), Wiley-VCH: Wiley-VCH Berlin
[45] Chen, G.; Hsu, S. H., Linear Stochastic Control Systems (1995), CRC: CRC New York · Zbl 0860.93001
[46] Copeland, N. G.; Jenkins, N. A.; Court, D. L., Recombineering: a powerful new tool for mouse functional genomics, Nat. Rev. Genet., 2, 769 (2001)
[47] Court, D. L.; Sawitzke, J. A.; Thomason, L. C., Genetic engineering using homologous recombination, Annu. Rev. Genet., 36, 361 (2002)
[48] Decker, C. J.; Parker, R., A turnover pathway for stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation, Genes Dev., 7, 1632 (1993)
[49] Decker, C. J.; Parker, R., Mechanisms of mRNA degradation in eukaryotes, Trends Biochem. Sci., 19, 336 (1994)
[50] Beelman, C. A.; Parker, R., Degradation of mRNA in eukaryotes, Cell, 81, 179 (1995)
[51] Caponigro, G.; Parker, P., Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae, Microbiol. Rev., 60, 233 (1996)
[52] He, W.; Parker, R., Analysis of mRNA decay pathway in S. cerevisiae, Methods, 17, 3 (1999)
[53] Tucker, M.; Parker, R., Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae, Annu. Rev. Biochem., 69, 571 (2000)
[54] Steiger, M.; Parker, R., Analyzing mRNA decay in Saccharomyces cerevisiae, Methods Enzymol., 351, 648 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.