×

Algorithms for drug sensitivity prediction. (English) Zbl 1461.62186

Summary: Precision medicine entails the design of therapies that are matched for each individual patient. Thus, predictive modeling of drug responses for specific patients constitutes a significant challenge for personalized therapy. In this article, we consider a review of approaches that have been proposed to tackle the drug sensitivity prediction problem especially with respect to personalized cancer therapy. We first discuss modeling approaches that are based on genomic characterizations alone and further the discussion by including modeling techniques that integrate both genomic and functional information. A comparative analysis of the prediction performance of four representative algorithms, elastic net, random forest, kernelized Bayesian multi-task learning and deep learning, reflecting the broad classes of regularized linear, ensemble, kernelized and neural network-based models, respectively, has been included in the paper. The review also considers the challenges that need to be addressed for successful implementation of the algorithms in clinical practice.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62J05 Linear regression; mixed models
92C40 Biochemistry, molecular biology
92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Steele, F.R.; Personalized medicine: Something old, something new; Future Med.: 2009; Volume 6 ,1-5.
[2] Langdon, S.P.; ; Cancer Cell Culture: Methods and Protocols: New York, NY, USA 2004; .
[3] Masters, J.R.; Human cancer cell lines: Fact and fantasy; Nat. Rev. Mol. Cell Biol.: 2000; Volume 1 ,233-236.
[4] Gillet, J.; Calcagno, A.M.; Varma, S.; Marino, M.; Green, L.J.; Vora, M.I.; Patel, C.; Orina, J.N.; Eliseeva, T.A.; Singal, V.; Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance; Proc. Natl. Acad. Sci. USA: 2011; Volume 108 ,18708-18713.
[5] Hudis, C.A.; Trastuzumab—Mechanism of Action and Use in Clinical Practice; N. Engl. J. Med.: 2007; Volume 357 ,39-51.
[6] Hynes, N.E.; Lane, H.A.; ERBB receptors and cancer: The complexity of targeted inhibitors; Nat. Rev. Cancer: 2005; Volume 5 ,341-354.
[7] Hoang, M.P.; Sahin, A.A.; Ordonez, N.G.; Sneige, N.; HER-2/neu gene amplification compared with HER-2/neu protein overexpression and interobserver reproducibility in invasive breast carcinoma; Am. J. Clin. Pathol.: 2000; Volume 113 ,852-859.
[8] Lebeau, A.; Deimling, D.; Kaltz, C.; Sendelhofert, A.; Iff, A.; Luthardt, B.; Untch, M.; Lohrs, U.; HER-2/neu analysis in archival tissue samples of human breast cancer: Comparison of immunohistochemistry and fluorescence in situ hybridization; J. Clin. Oncol.: 2001; Volume 19 ,354-363.
[9] Endo, Y.; Dong, Y.; Kondo, N.; Yoshimoto, N.; Asano, T.; Hato, Y.; Nishimoto, M.; Kato, H.; Takahashi, S.; Nakanishi, R.; HER2 mutation status in Japanese HER2-positive breast cancer patients; Breast Cancer: 2015; Volume 23 ,902-907.
[10] Cappuzzo, F.; Hirsch, F.R.; Rossi, E.; Bartolini, S.; Ceresoli, G.L.; Bemis, L.; Haney, J.; Witta, S.; Danenberg, K.; Domenichini, I.; Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer; J. Natl. Cancer Inst.: 2005; Volume 97 ,643-655.
[11] Esteller, M.; DNA methylation and cancer therapy: New developments and expectations; Curr. Opin. Oncol.: 2005; Volume 17 ,55-60.
[12] Chiappinelli, K.B.; Strissel, P.L.; Desrichard, A.; Li, H.; Henke, C.; Akman, B.; Hein, A.; Rote, N.S.; Cope, L.M.; Snyder, A.; Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses; Cell: 2015; Volume 162 ,974-986.
[13] Roulois, D.; Loo Yau, H.; Singhania, R.; Wang, Y.; Danesh, A.; Shen, S.Y.; Han, H.; Liang, G.; Jones, P.A.; Pugh, T.J.; DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts; Cell: 2015; Volume 162 ,961-973.
[14] Heller, M.J.; DNA Microarray Technology: Devices, Systems, and Applications; Ann. Rev. Biomed. Eng.: 2002; Volume 4 ,129-153.
[15] Velculescu, V.E.; Zhang, L.; Vogelstein, B.; Kinzler, K.W.; Serial Analysis of Gene Expression; Science: 1995; Volume 270 ,484-487.
[16] Brenner, S.; Johnson, M.; Bridgham, J.; Golda, G.; Lloyd, D.H.; Johnson, D.; Luo, S.; McCurdy, S.; Foy, M.; Ewan, M.; Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays; Nat. Biotechnol.: 2000; Volume 18 ,630-634.
[17] Wang, Z.; Gerstein, M.; Snyder, M.; RNA-Seq: A revolutionary tool for transcriptomics; Nat. Rev. Genet.: 2009; Volume 10 ,57-63.
[18] Rabilloud, T.; Lelong, C.; Two-dimensional gel electrophoresis in proteomics: A tutorial; J. Proteom.: 2011; Volume 74 ,1829-1841.
[19] Franck, J.; Arafah, K.; Elayed, M.; Bonnel, D.; Vergara, D.; Jacquet, A.; Vinatier, D.; Wisztorski, M.; Day, R.; Fournier, I.; MALDI Imaging Mass Spectrometry; Mol. Cell. Proteom.: 2009; Volume 8 ,2023-2033.
[20] Spurrier, B.; Ramalingam, S.; Nishizuka, S.; Reverse-phase protein lysate microarrays for cell signaling analysis; Nat. Protoc.: 2008; Volume 3 ,1796-1808.
[21] Li, F.; Gonzalez, F.J.; Ma, X.; LC-MS-based metabolomics in profiling of drug metabolism and bioactivation; Acta Pharm. Sin. B: 2012; Volume 2 ,118-125.
[22] Ross, D.T.; Scherf, U.; Eisen, M.B.; Perou, C.M.; Rees, C.; Spellman, P.; Iyer, V.; Jeffrey, S.S.; van de Rijn, M.; Waltham, M.; Systematic variation in gene expression patterns in human cancer cell lines; Nat. Genet.: 2000; Volume 24 ,227-235.
[23] Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity; Nature: 2012; Volume 483 ,603-607.
[24] Yang, W.E.A.; Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells; Nucleic Acids Res.: 2013; Volume 41 ,D955-D961.
[25] Costello, J.C.; Heiser, L.M.; Georgii, E.; Gönen, M.; Menden, M.P.; Wang, N.J.; Bansal, M.; Ammad-ud-din, M.; Hintsanen, P.; Khan, S.A.; A community effort to assess and improve drug sensitivity prediction algorithms; Nat. Biotechnol.: 2014; Volume 32 ,1202-1212.
[26] Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M.; Chang, K.; The Cancer Genome Atlas Pan-Cancer analysis project; Nat. Genet.: 2013; Volume 45 ,1113-1120.
[27] Daemen, A.; Griffith, O.L.; Heiser, L.M.; Wang, N.J.; Enache, O.M.; Sanborn, Z.; Pepin, F.; Durinck, S.; Korkola, J.E.; Griffith, M.; Modeling precision treatment of breast cancer; Genome Biol.: 2013; Volume 14 ,R110.
[28] Klijn, C.; Durinck, S.; Stawiski, E.W.; Haverty, P.M.; Jiang, Z.; Liu, H.; Degenhardt, J.; Mayba, O.; Gnad, F.; Liu, J.; A comprehensive transcriptional portrait of human cancer cell lines; Nat. Biotechnol.: 2015; Volume 33 ,306-312.
[29] Hook, K.E.; Garza, S.J.; Lira, M.E.; Ching, K.A.; Lee, N.V.; Cao, J.; Yuan, J.; Ye, J.; Ozeck, M.; Shi, S.T.; An integrated genomic approach to identify predictive biomarkers of response to the aurora kinase inhibitor PF-03814735; Mol. Cancer Therap.: 2012; Volume 11 ,710-719.
[30] Basu, A.; Bodycombe, N.E.; Cheah, J.H.; Price, E.V.; Liu, K.; Schaefer, G.I.; Ebright, R.Y.; Stewart, M.L.; Ito, D.; Wang, S.; An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules; Cell: 2013; Volume 154 ,1151-1161.
[31] Berlow, N.; Haider, S.; Wan, Q.; Geltzeiler, M.; Davis, L.E.; Keller, C.; Pal, R.; An integrated approach to anti-cancer drugs sensitivity prediction; IEEE/ACM Trans. Comput. Biol. Bioinform.: 2014; Volume 11 ,995-1008.
[32] Berlow, N.; Davis, L.E.; Cantor, E.L.; Seguin, B.; Keller, C.; Pal, R.; A new approach for prediction of tumor sensitivity to targeted drugs based on functional data; BMC Bioinform.: 2013; Volume 14 .
[33] Robnik-Sikonja, M.; Kononenko, I.; Theoretical and empirical analysis of ReliefF and RReliefF; Mach. Learn.: 2003; Volume 53 ,23-69. · Zbl 1076.68065
[34] Haider, S.; Rahman, R.; Ghosh, S.; Pal, R.; A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction; PLoS ONE: 2015; Volume 10 .
[35] Peng, H.; Long, F.; Ding, C.; Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy; IEEE Trans. Pattern Anal. Mach. Intell.: 2005; Volume 27 ,1226-1238.
[36] De Jay, N.; Papillon-Cavanagh, S.; Olsen, C.; El-Hachem, N.; Bontempi, G.; Haibe-Kains, B.; mRMRe: An R package for parallelized mRMR ensemble feature selection; Bioinformatics: 2013; Volume 29 ,2365-2368.
[37] Liu, L.; Chen, L.; Zhang, Y.H.; Wei, L.; Cheng, S.; Kong, X.; Zheng, M.; Huang, T.; Cai, Y.D.; Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection; J. Biomol. Struct. Dyn.: 2016; ,1-18.
[38] Pudil, P.; Novovicova, J.; Kittler, J.; Floating search methods in feature selection; Pattern Recog. Lett.: 1994; Volume 15 ,1119-1125.
[39] Dong, Z.; Zhang, N.; Li, C.; Wang, H.; Fang, Y.; Wang, J.; Zheng, X.; Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection; BMC Cancer: 2015; Volume 15 .
[40] Tikhonov, A.; Solution of incorrectly formulated problems and the regularization method; Sov. Math. Dokl.: 1963; Volume 4 ,1035-1038. · Zbl 0141.11001
[41] Neto, E.C.; Jang, I.S.; Friend, S.H.; Margolin, A.A.; The Stream algorithm: Computationally efficient ridge-regression via Bayesian model averaging, and applications to pharmacogenomic prediction of cancer cell line sensitivity; Pac. Symp. Biocomput.: 2014; ,27-38.
[42] Tibshirani, R.; Regression Shrinkage and Selection via the Lasso; J. R. Stat. Soc. Ser. B: 1994; Volume 58 ,267-288. · Zbl 0850.62538
[43] Park, H.; Imoto, S.; Miyano, S.; Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets; PLoS ONE: 2015; Volume 10 .
[44] Zou, H.; Hastie, T.; Regularization and variable selection via the Elastic Net; J. R. Stat. Soc. Ser. B: 2005; Volume 67 ,301-320. · Zbl 1069.62054
[45] Pearson, K.; On lines and planes of closest fit to systems of points in space; Philos. Mag.: 1901; Volume 2 ,559-572. · JFM 32.0246.07
[46] Goswami, C.P.; Cheng, L.; Alexander, P.S.; Singal, A.; Li, L.; A New Drug Combinatory Effect Prediction Algorithm on the Cancer Cell Based on Gene Expression and Dose-Response Curve; CPT Pharm. Syst. Pharmacol.: 2015; Volume 4 ,e9.
[47] Pal, R.; Berlow, N.; A Kinase inhibition map approach for tumor sensitivity prediction and combination therapy design for targeted drugs; Pac. Symp. Biocomput.: 2012; ,351-362.
[48] Wan, Q.; Pal, R.; An ensemble based top performing approach for NCI-DREAM drug sensitivity prediction challenge; PLoS ONE: 2014; Volume 9 .
[49] Sokolov, A.; Carlin, D.E.; Paull, E.O.; Baertsch, R.; Stuart, J.M.; Pathway-Based Genomics Prediction using Generalized Elastic Net; PLoS Comput. Biol.: 2016; Volume 12 .
[50] Bandyopadhyay, N.; Kahveci, T.; Goodison, S.; Sun, Y.; Ranka, S.; Pathway-BasedFeature Selection Algorithm for Cancer Microarray Data; Adv. Bioinform.: 2009; Volume 2009 ,532989.
[51] Amadoz, A.; Sebastian-Leon, P.; Vidal, E.; Salavert, F.; Dopazo, J.; Using activation status of signaling pathways as mechanism-based biomarkers to predict drug sensitivity; Sci. Rep.: 2015; Volume 5 ,18494.
[52] Jang, I.S.; Neto, E.C.; Guinney, J.; Friend, S.H.; Margolin, A.A.; Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data; ; .
[53] ; Applied Regression Analysis and Other Multivariable Methods: Boston, MA, USA 1988; .
[54] Tikhonov, A.N.; Arsenin, V.Y.; ; Solutions of Ill-Posed Problems: Washington, DC, USA 1977; . · Zbl 0354.65028
[55] Zhou, Q.; Chen, W.; Song, S.; Gardner, J.; Weinberger, K.; Chen, Y.; A Reduction of the Elastic Net to Support Vector Machines with an Application to GPU Computing; arXiv: 2014; .
[56] Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G.; GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers; Genome Biol.: 2011; Volume 12 ,R41.
[57] Geeleher, P.; Cox, N.J.; Huang, R.S.; Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines; Genome Biol.: 2014; Volume 15 ,R47.
[58] Breiman, L.; Random Forests; Mach. Learn.: 2001; Volume 45 ,5-32. · Zbl 1007.68152
[59] Tibshirani, R.; Hastie, T.; Narasimhan, B.; Chu, G.; Diagnosis of multiple cancer types by shrunken centroids of gene expression; Proc. Natl. Acad. Sci. USA: 2002; Volume 99 ,6567-6572.
[60] Næs, T.; Mevik, B.H.; Understanding the collinearity problem in regression and discriminant analysis; J. Chemom.: 2001; Volume 15 ,413-426.
[61] ; pls: Partial Least Squares and Principal Component Regression: ; .
[62] Gonen, M.; Margolin, A.A.; Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning; Bioinformatics: 2014; Volume 30 ,i556-i563.
[63] Strother, H.; Walker, D.B.D.; Estimation of the Probability of an Event as a Function of Several Independent Variables; Biometrika: 1967; Volume 54 ,167-179. · Zbl 0159.47604
[64] Freedman, D.; ; Statistical Models: Theory and Practice: Cambridge, UK 2005; . · Zbl 1096.62002
[65] Kim, D.C.; Wang, X.; Yang, C.R.; Gao, J.X.; A framework for personalized medicine: prediction of drug sensitivity in cancer by proteomic profiling; Proteome Sci.: 2012; Volume 10 ,S13.
[66] Hejase, H.A.; Chan, C.; Improving Drug Sensitivity Prediction Using Different Types of Data; CPT Pharm. Syst. Pharmacol.: 2015; Volume 4 ,e2.
[67] Bayer, I.; Groth, P.; Schneckener, S.; Prediction errors in learning drug response from gene expression Data—Influence of labeling, sample size, and machine learning algorithm; PLoS ONE: 2013; Volume 8 .
[68] Geladi, P.; Kowalski, B.R.; Partial least-squares regression: A tutorial; Anal. Chim. Acta: 1986; Volume 185 ,1-17.
[69] Dijkstra, T.; Some comments on maximum likelihood and partial least squares methods; J. Econom.: 1983; Volume 22 ,67-90. · Zbl 0521.62098
[70] Hastie, T.; Tibshirani, R.; Friedman, J.; ; The Elements of Statistical Learning: New York, NY, USA 2001; . · Zbl 0973.62007
[71] Ildiko, E.; Frank, J.H.F.; A Statistical View of Some Chemometrics Regression Tools; Technometrics: 1993; Volume 35 ,109-135. · Zbl 0775.62288
[72] Vapnik, V.; Lerner, A.; Pattern Recognition Using Generalized Portrait Method; Autom. Remote Control: 1963; Volume 24 ,774-780.
[73] Vapnik, V.; Chervonenkis, A.; A note on one class of perceptrons; Autom. Remote Control: 1964; Volume 25 . · Zbl 0173.19103
[74] Vapnik, V.N.; ; Statistical Learning Theory: Hoboken, NJ, USA 1998; . · Zbl 0935.62007
[75] Müller, K.R.; Smola, A.; Rätsch, G.; Schölkopf, B.; Kohlmorgen, J.; Vapnik, V.; Predicting time series with support vector machines; Artificial Neural Networks—ICANN’97: Berlin/Heidelberg, Germany 1997; Volume Volume 1327 ,999-1004.
[76] Mattera, D.; Haykin, S.; Support Vector Machines for Dynamic Reconstruction of a Chaotic System; Advances in Kernel Methods: Cambridge, MA, USA 1999; ,211-241.
[77] Smola, A.J.; Schölkopf, B.; A Tutorial on Support Vector Regression; Stat. Comput.: 2004; Volume 14 ,199-222.
[78] Cristianini, N.; Shawe-Taylor, J.; ; An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods: New York, NY, USA 2000; . · Zbl 0994.68074
[79] Cherkassky, V.; Ma, Y.; Comparison of model selection for regression; Neural Comput.: 2003; Volume 15 ,1691-1714. · Zbl 1046.62001
[80] Freund, Y.; Schapire, R.E.; A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting; J. Comput. Syst. Sci.: 1997; Volume 55 ,119-139. · Zbl 0880.68103
[81] Breiman, L.; Bagging Predictors; Mach. Learn.: 1996; Volume 24 ,123-140. · Zbl 0858.68080
[82] Wolpert, D.H.; Stacked Generalization; Neural Netw.: 1992; Volume 5 ,241-259.
[83] Clarke, B.; Comparing Bayes Model Averaging and Stacking When Model Approximation Error Cannot Be Ignored; J. Mach. Learn. Res.: 2003; Volume 4 ,683-712. · Zbl 1102.68488
[84] Breiman, L.; Stacked Regressions; Mach. Learn.: 1996; Volume 24 ,49-64. · Zbl 0849.68104
[85] Riddick, G.; Song, H.; Ahn, S.; Walling, J.; Borges-Rivera, D.; Zhang, W.; Fine, H.A.; Predicting in vitro drug sensitivity using Random Forests; Bioinformatics: 2011; Volume 27 ,220-224.
[86] Lunetta, K.L.; Hayward, L.B.; Segal, J.; van Eerdewegh, P.; Screening large-scale association study data: Exploiting interactions using random forests; BMC Genet.: 2004; Volume 5 .
[87] Bureau, A.; Dupuis, J.; Falls, K.; Lunetta, K.L.; Hayward, B.; Keith, T.P.; Van Eerdewegh, P.; Identifying SNPs predictive of phenotype using random forests; Genet. Epidemiol.: 2005; Volume 28 ,171-182.
[88] Diaz-Uriarte, R.; Alvarez de Andres, S.; Gene selection and classification of microarray data using random forest; BMC Bioinform.: 2006; Volume 7 .
[89] Yao, D.; Yang, J.; Zhan, X.; Zhan, X.; Xie, Z.; A novel random forests-based feature selection method for microarray expression data analysis; Int. J. Data Min. Bioinform.: 2015; Volume 13 ,84-101.
[90] Yu, D.J.; Li, Y.; Hu, J.; Yang, X.; Yang, J.Y.; Shen, H.B.; Disulfide Connectivity Prediction Based on Modelled Protein 3D Structural Information and Random Forest Regression; IEEE/ACM Trans. Comput. Biol. Bioinform.: 2015; Volume 12 ,611-621.
[91] Qi, Y.; Bar-Joseph, Z.; Klein-Seetharaman, J.; Evaluation of different biological data and computational classification methods for use in protein interaction prediction; Proteins: 2006; Volume 63 ,490-500.
[92] Rahman, R.; Haider, S.; Ghosh, S.; Pal, R.; Design of Probabilistic Random Forests with Applications to Anticancer Drug Sensitivity Prediction; Cancer Inform.: 2015; Volume 14 ,57.
[93] Ho, T.K.; Random Decision Forests; Proceedings of the Third International Conference on Document Analysis and Recognition ICDAR ’95 (Volume 1): ; ,278-282.
[94] Ho, T.K.; The Random Subspace Method for Constructing Decision Forests; IEEE Trans. Pattern Anal. Mach. Intell.: 1998; Volume 20 ,832-844.
[95] Amit, Y.; Geman, D.; Shape Quantization and Recognition with Randomized Trees; Neural Comput.: 1997; Volume 9 ,1545-1588.
[96] Breiman, L.; Friedman, J.; Olshen, R.; Stone, C.; ; Classification and Regression Trees: Monterey, CA, USA 1984; . · Zbl 0541.62042
[97] Ospina, J.D.; Zhu, J.; Chira, C.; Bossi, A.; Delobel, J.B.; Beckendorf, V.; Dubray, B.; Lagrange, J.L.; Correa, J.C.; Simon, A.; Random forests to predict rectal toxicity following prostate cancer radiation therapy; Int. J. Radiat. Oncol. Biol. Phys.: 2014; Volume 89 ,1024-1031.
[98] Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.; Improving neural networks by preventing co-adaptation of feature detectors; CoRR: 2012; . · Zbl 1318.68153
[99] Hinton, G.E.; Osindero, S.; Teh, Y.W.; A fast learning algorithm for deep belief nets; Neural Comput.: 2006; Volume 18 ,1527-1554. · Zbl 1106.68094
[100] Jaitly, N.; Nguyen, P.; Senior, A.; Vanhoucke, V.; Application of pretrained deep neural networks to large vocabulary speech recognition; Proceedings of the Interspeech 2012: ; .
[101] Dahl, G.; Jaitly, N.; Salakhutdinov, R.; Multi-task Neural Networks for QSAR Predictions; arXiv: 2014; .
[102] Sawyers, C.; Targeted Cancer Therapy; Nature: 2004; Volume 432 ,294-297.
[103] Green, M.R.; Targeting Targeted Therapy; N. Engl. J. Med.: 2004; Volume 350 ,2191-2193.
[104] Druker, B.J.; Molecularly targeted therapy: Have the floodgates opened?; Oncologist: 2004; Volume 9 ,357-360.
[105] Hopkins, A.; Mason, J.; Overington, J.; Can we rationally design promiscuous drugs?; Curr. Opin. Struct. Biol.: 2006; Volume 16 ,127-136.
[106] Knight, Z.A.; Shokat, K.M.; Features of Selective Kinase Inhibitors; Chem. Biol.: 2005; Volume 12 ,621-637.
[107] Tyner, J.W.; Deininger, M.W.; Loriaux, M.M.; Chang, B.H.; Gotlib, J.R.; Willis, S.G.; Erickson, H.; Kovacsovics, T.; O’Hare, T.; Heinrich, M.C.; RNAi screen for rapid therapeutic target identification in leukemia patients; Proc. Natl. Acad. Sci. USA: 2009; Volume 106 ,8695-8700.
[108] Berlow, N.; Davis, L.; Keller, C.; Pal, R.; Inference of dynamic biological networks based on responses to drug perturbations; EURASIP J. Bioinform. Syst. Biol.: 2014; Volume 14 .
[109] Berlow, N.; Pal, R.; Davis, L.; Keller, C.; Analyzing Pathway Design From Drug Perturbation Experiments; Proceedings of the 2012 IEEE Statistical Signal Processing Workshop (SSP): ; ,552-555.
[110] Berlow, N.; Haider, S.; Pal, R.; Keller, C.; Quantifying the inference power of a drug screen for predictive analysis; Proceedings of the 2013 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS): ; ,49-52.
[111] Haider, S.; Berlow, N.; Pal, R.; Davis, L.; Keller, C.; Combination therapy design for targeted therapeutics from a Drug-Protein interaction perspective; Proceedings of the 2012 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS): ; ,58-61.
[112] Grasso, C.S.; Tang, Y.; Truffaux, N.; Berlow, N.E.; Liu, L.; Debily, M.; Quist, M.J.; Davis, L.E.; Huang, E.C.; Woo, P.J.; Functionally-defined Therapeutic Targets in Diffuse Intrinsic Pontine Glioma; Nat. Med.: 2015; .
[113] Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J.; Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties; PLoS ONE: 2013; Volume 8 .
[114] Yue, Z.; Zhang, W.; Lu, Y.; Yang, Q.; Ding, Q.; Xia, J.; Chen, Y.; Prediction of cancer cell sensitivity to natural products based on genomic and chemical properties; PeerJ: 2015; Volume 3 ,e1425.
[115] Rodriguez, J.J.; Kuncheva, L.I.; Alonso, C.J.; Rotation forest: A new classifier ensemble method; IEEE Trans. Pattern Anal. Mach. Intell.: 2006; Volume 28 ,1619-1630.
[116] Bottou, L.; Large-scale machine learning with stochastic gradient descent; Proceedings of the 19th International Conference on Computational Statistics: ; . · Zbl 1120.68426
[117] Sutskever, I.; Martens, J.; Dahl, G.E.; Hinton, G.E.; On the importance of initialization and momentum in deep learning; ICML JMLR Proc.: 2013; Volume 28 ,1139-1147.
[118] Akaike, H.; A new look at the statistical model identification; IEEE Trans. Autom. Control: 1974; Volume 19 ,716-723. · Zbl 0314.62039
[119] Rissanen, J.; A Universal Prior for Integers and Estimation by Minimum Description Length; Ann. Stat.: 1983; Volume 11 ,416-431. · Zbl 0513.62005
[120] Tanaka, T.; Tanimoto, K.; Otani, K.; Satoh, K.; Ohtaki, M.; Yoshida, K.; Toge, T.; Yahata, H.; Tanaka, S.; Chayama, K.; Concise prediction models of anticancer efficacy of 8 drugs using expression data from 12 selected genes; Int. J. Cancer: 2004; Volume 111 ,617-626.
[121] Chen, B.J.; Litvin, O.; Ungar, L.; Pe’er, D.; Context Sensitive Modeling of Cancer Drug Sensitivity; PLoS ONE: 2015; Volume 10 .
[122] Shoemaker, R.H.; The NCI60 human tumour cell line anticancer drug screen; Nat. Rev. Cancer: 2006; Volume 6 ,813-823.
[123] Pal, R.; Datta, A.; Fornace, A.; Bittner, M.; Dougherty, E.; Boolean relationships among genes responsive to ionizing radiation in the NCI 60 ACDS; Bioinformatics: 2005; Volume 21 ,1542-1549.
[124] Kim, J.B.; Stein, R.; O’Hare, M.J.; Three-dimensional in vitro tissue culture models of breast cancer—A review; Breast Cancer Res. Treat.: 2004; Volume 85 ,281-291.
[125] Gordon, J.W.; Scangos, G.A.; Plotkin, D.J.; Barbosa, J.A.; Ruddle, F.H.; Genetic transformation of mouse embryos by microinjection of purified DNA; Proc. Natl. Acad. Sci. USA: 1980; Volume 77 ,7380-7384.
[126] Thomas, K.R.; Capecchi, M.R.; Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells; Cell: 1987; Volume 51 ,503-512.
[127] Walrath, J.C.; Hawes, J.J.; van Dyke, T.; Reilly, K.M.; Genetically engineered mouse models in cancer research; Adv. Cancer Res.: 2010; Volume 106 ,113-164.
[128] Richmond, A.; Su, Y.; Mouse xenograft models vs. GEM models for human cancer therapeutics; Dis. Models Mech.: 2008; Volume 1 ,78-82.
[129] Kerbel, R.S.; Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: Better than commonly perceived-but they can be improved; Cancer Biol. Ther.: 2003; Volume 2 ,S134-S139.
[130] Johnson, J.I.; Decker, S.; Zaharevitz, D.; Rubinstein, L.V.; Venditti, J.M.; Schepartz, S.; Kalyandrug, S.; Christian, M.; Arbuck, S.; Hollingshead, M.; Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials; Br. J. Cancer: 2001; Volume 84 ,1424-1431.
[131] Scholz, C.C.; Berger, D.P.; Winterhalter, B.R.; Henss, H.; Fiebig, H.H.; Correlation of drug response in patients and in the clonogenic assay with solid human tumour xenografts; Eur. J. Cancer: 1990; Volume 26 ,901-905.
[132] Khanna, C.; Lindblad-Toh, K.; Vail, D.; London, C.; Bergman, P.; Barber, L.; Breen, M.; Kitchell, B.; McNeil, E.; Modiano, J.F.; The dog as a cancer model; Nat. Biotechnol.: 2006; Volume 24 ,1065-1066.
[133] Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; STRING v10: Protein-protein interaction networks, integrated over the tree of life; Nucleic Acids Res.: 2015; Volume 43 ,D447-D452.
[134] Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T.; Cytoscape: A software environment for integrated models of biomolecular interaction networks; Genome Res.: 2003; Volume 13 ,2498-2504.
[135] Kutmon, M.; Kelder, T.; Mandaviya, P.; Evelo, C.T.; Coort, S.L.; CyTargetLinker: A cytoscape app to integrate regulatory interactions in network analysis; PLoS ONE: 2013; Volume 8 .
[136] Haibe-Kains, B.; El-Hachem, N.; Birkbak, N.J.; Jin, A.C.; Beck, A.H.; Aerts, H.J.W.L.; Quackenbush, J.; Inconsistency in large pharmacogenomic studies; Nature: 2013; Volume 504 ,389-393.
[137] Marusyk, A.; Polyak, K.; Tumor heterogeneity: Causes and consequences; Biochim. Biophys. Acta: 2010; Volume 1805 ,105-117.
[138] Shackleton, M.; Quintana, E.; Fearon, E.R.; Morrison, S.J.; Heterogeneity in Cancer: Cancer Stem Cells versus Clonal Evolution; Cell: 2009; Volume 138 ,822-829.
[139] Swanton, C.; Burrell, R.; Futreal, P.A.; Breast cancer genome heterogeneity: A challenge to personalised medicine?; Breast Cancer Res.: 2011; Volume 13 ,104.
[140] Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing; N. Engl. J. Med.: 2012; Volume 366 ,883-892.
[141] Kuhn, M.; Campillos, M.; Letunic, I.; Jensen, L.J.; Bork, P.; A side effect resource to capture phenotypic effects of drugs; Mol. Syst. Biol.: 2010; Volume 6 ,343.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.