×

Discovering the constrained NMSSM with tau leptons at the LHC. (English) Zbl 1214.81326

Summary: The constrained Next-to-Minimal Supersymmetric StandardModel (cNMSSM) with mSugra-like boundary conditions at the GUT scale implies a singlino-like LSP with a mass just a few GeV below a stau NLSP. Hence, most of the squark/gluino decay cascades contain two \(\tau \) leptons. The gluino mass \(\gtrsim 1.\)2 TeV is somewhat larger than the squark masses of \(\gtrsim 1\) TeV. We simulate signal and background events for such a scenario at the LHC, and propose cuts on the transverse momenta of two jets, the missing transverse energy and the transverse momentum of a hadronically decaying \(\tau \) lepton. This dedicated analysis allows to improve on the results of generic supersymmetry searches for a large part of the parameter space of the cNMSSM. The distribution of the effective mass and the signal rate provide sensitivity to distinguish the cNMSSM from the constrained Minimal Supersymmetric Standard Model in the stau-coannihilation region.

MSC:

81V22 Unified quantum theories
81T60 Supersymmetric field theories in quantum mechanics
81V35 Nuclear physics
81V17 Gravitational interaction in quantum theory
81U99 Quantum scattering theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys.A 25 (2010) 3505 [arXiv:0906.0777] [SPIRES]. · Zbl 1194.81301
[2] U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept.496 (2010) 1 [arXiv:0910.1785] [SPIRES]. · doi:10.1016/j.physrep.2010.07.001
[3] J.E. Kim and H.P. Nilles, The mu Problem and the Strong CP Problem, Phys. Lett.B 138 (1984) 150 [SPIRES].
[4] S.A. Abel, S. Sarkar and I.B. Whittingham, Neutralino dark matter in a class of unified theories, Nucl. Phys.B 392 (1993) 83 [hep-ph/9209292] [SPIRES]. · doi:10.1016/0550-3213(93)90198-X
[5] U. Ellwanger and C. Hugonie, Neutralino cascades in the (M+1)SSM, Eur. Phys. J.C 5 (1998) 723 [hep-ph/9712300] [SPIRES]. · doi:10.1007/s100529800878
[6] U. Ellwanger and C. Hugonie, Topologies of the (M+1)SSM with a singlino LSP at LEP2, Eur. Phys. J.C 13 (2000) 681 [hep-ph/9812427] [SPIRES]. · doi:10.1007/s100520000258
[7] S. Hesselbach, F. Franke and H. Fraas, Displaced vertices in extended supersymmetric models, Phys. Lett.B 492 (2000) 140 [hep-ph/0007310] [SPIRES]. · Zbl 1031.81647
[8] V. Barger, P. Langacker and G. Shaughnessy, Neutralino signatures of the singlet extended MSSM, Phys. Lett.B 644 (2007) 361 [hep-ph/0609068] [SPIRES].
[9] G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark matter in the NMSSM, JCAP09 (2005) 001 [hep-ph/0505142] [SPIRES].
[10] J.F. Gunion, D. Hooper and B. McElrath, Light neutralino dark matter in the NMSSM, Phys. Rev.D 73 (2006) 015011 [hep-ph/0509024] [SPIRES].
[11] D.G. Cerdeno, E. Gabrielli, D.E. Lopez-Fogliani, C. Muñoz and A.M. Teixeira, Phenomenological viability of neutralino dark matter in the NMSSM, JCAP06 (2007) 008 [hep-ph/0701271] [SPIRES].
[12] C. Hugonie, G. Bélanger and A. Pukhov, Dark Matter in the Constrained NMSSM, JCAP11 (2007) 009 [arXiv:0707.0628] [SPIRES].
[13] G. Bélanger, C. Hugonie and A. Pukhov, Precision measurements, dark matter direct detection and LHC Higgs searches in a constrained NMSSM, JCAP01 (2009) 023 [arXiv:0811.3224] [SPIRES].
[14] WMAP collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl.180 (2009) 330 [arXiv:0803.0547] [SPIRES]. · doi:10.1088/0067-0049/180/2/330
[15] J.R. Ellis, J.F. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev.D 39 (1989) 844 [SPIRES].
[16] M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys.A 4 (1989) 3635 [SPIRES].
[17] U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett.B 315 (1993) 331 [hep-ph/9307322] [SPIRES].
[18] T. Elliott, S.F. King and P.L. White, Unification constraints in the next-to-minimal supersymmetric standard model, Phys. Lett.B 351 (1995) 213 [hep-ph/9406303] [SPIRES].
[19] S.F. King and P.L. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev.D 52 (1995) 4183 [hep-ph/9505326] [SPIRES].
[20] U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys.B 492 (1997) 21 [hep-ph/9611251] [SPIRES]. · Zbl 1190.81124
[21] A. Djouadi, U. Ellwanger and A.M. Teixeira, The constrained next-to-minimal supersymmetric standard model, Phys. Rev. Lett.101 (2008) 101802 [arXiv:0803.0253] [SPIRES]. · Zbl 1228.81254 · doi:10.1103/PhysRevLett.101.101802
[22] A. Djouadi, U. Ellwanger and A.M. Teixeira, Phenomenology of the constrained NMSSM, JHEP04 (2009) 031 [arXiv:0811.2699] [SPIRES]. · doi:10.1088/1126-6708/2009/04/031
[23] U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun.177 (2007) 399 [hep-ph/0612134] [SPIRES]. · doi:10.1016/j.cpc.2007.05.001
[24] A. Djouadi et al., Benchmark scenarios for the NMSSM, JHEP07 (2008) 002 [arXiv:0801.4321] [SPIRES]. · doi:10.1088/1126-6708/2008/07/002
[25] C. Balázs and D. Carter, Discovery potential of the next-to-minimal supergravity motivated model, Phys. Rev.D 78 (2008) 055001 [arXiv:0808.0770] [SPIRES].
[26] D.J.H. Chung et al., The soft supersymmetry-breaking Lagrangian: Theory and applications, Phys. Rept.407 (2005) 1 [hep-ph/0312378] [SPIRES]. · doi:10.1016/j.physrep.2004.08.032
[27] D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, arXiv:0912.3259 [SPIRES].
[28] P. Nath et al., The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl.200-202 (2010) 185 [arXiv:1001.2693] [SPIRES]. · doi:10.1016/j.nuclphysbps.2010.03.001
[29] J.R. Ellis, T. Falk and K.A. Olive, Neutralino-Stau Coannihilation and the Cosmological Upper Limit on the Mass of the Lightest Supersymmetric Particle, Phys. Lett.B 444 (1998) 367 [hep-ph/9810360] [SPIRES].
[30] J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J.C 46 (2006) 43 [hep-ph/0511344] [SPIRES]. · doi:10.1140/epjc/s2005-02460-1
[31] R.L. Arnowitt, B. Dutta, T. Kamon, N. Kolev and D.A. Toback, Detection of SUSY in the stau-neutralino coannihilation region at the LHC, Phys. Lett.B 639 (2006) 46 [hep-ph/0603128] [SPIRES].
[32] U. Chattopadhyay, D. Das, A. Datta and S. Poddar, Non-zero trilinear parameter in the mSUGRA model — dark matter and collider signals at Tevatron and LHC, Phys. Rev.D 76 (2007) 055008 [arXiv:0705.0921] [SPIRES].
[33] R.L. Arnowitt et al., Determining the Dark Matter Relic Density in the mSUGRA Stau-Neutralino Co-Annhiliation Region at the LHC, Phys. Rev. Lett.100 (2008) 231802 [arXiv:0802.2968] [SPIRES]. · doi:10.1103/PhysRevLett.100.231802
[34] ALEPH collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J.C 47 (2006) 547 [hep-ex/0602042] [SPIRES]. · doi:10.1140/epjc/s2006-02569-7
[35] U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP02 (2005) 066 [hep-ph/0406215] [SPIRES]. · doi:10.1088/1126-6708/2005/02/066
[36] U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun.175 (2006) 290 [hep-ph/0508022] [SPIRES]. · Zbl 1196.81058 · doi:10.1016/j.cpc.2006.04.004
[37] G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys.B 825 (2010) 119 [arXiv:0907.4682] [SPIRES]. · Zbl 1196.81257 · doi:10.1016/j.nuclphysb.2009.09.018
[38] A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of Supersymmetric Particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon.B 38 (2007) 635 [hep-ph/0609292] [SPIRES].
[39] W. Beenakker, R. Hopker and M. Spira, PROSPINO: A program for the PROduction of Supersymmetric Particles In Next-to-leading Order QCD, hep-ph/9611232 [SPIRES] for updates see http://www.thphys.uni-heidelberg.de/∼plehn/prospino/.
[40] The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment — Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES]. · Zbl 1390.81725
[41] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [SPIRES]. · Zbl 1368.81015 · doi:10.1088/1126-6708/2006/05/026
[42] M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP07 (2003) 001 [hep-ph/0206293] [SPIRES]. · doi:10.1088/1126-6708/2003/07/001
[43] S. Jadach, J.H. Kuhn and Z. Was, TAUOLA: A Library of Monte Carlo programs to simulate decays of polarized tau leptons, Comput. Phys. Commun.64 (1990) 275 [SPIRES]. · doi:10.1016/0010-4655(91)90038-M
[44] M. Jezabek, Z. Was, S. Jadach and J.H. Kuhn, The tau decay library TAUOLA, update with exact O(α) QED corrections in τ → μ(e) neutrino anti-neutrino decay modes, Comput. Phys. Commun.70 (1992) 69 [SPIRES]. · doi:10.1016/0010-4655(92)90092-D
[45] S. Jadach, Z. Was, R. Decker and J.H. Kuhn, The τ decay library TAUOLA: Version 2.4, Comput. Phys. Commun.76 (1993) 361 [SPIRES]. · doi:10.1016/0010-4655(93)90061-G
[46] E. Richter-Was, AcerDET: A particle level fast simulation and reconstruction package for phenomenological studies on high pTphysics at LHC, hep-ph/0207355 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.