×

A triobjective model for locating a public semiobnoxious facility in the plane. (English) Zbl 1394.90387

Summary: A new mathematical model for locating a single semiobnoxious facility in the plane is proposed. Three objectives are taken into consideration. The first one maximizes the efficiency of the service provided by the facility to some users, by minimizing the sum of weighted distances between the facility and those users. The second one minimizes the social cost caused by the undesirable effects produced by the facility, by minimizing the sum of the repulsions of the affected people (as they feel it). The third one aims to distribute the repulsions fairly (as equal as possible) among the affected people. To prove that the new model can be tackled in practice, two recent general-purpose multiobjective evolutionary algorithms, MOEA/D and FEMOEA, are suggested to obtain a discrete approximation of its Pareto-front. A computational study shows that both algorithms are suitable to cope with the problem.

MSC:

90B80 Discrete location and assignment
90C29 Multi-objective and goal programming

Software:

jMetal; SPEA2; AbYSS; MOEA/D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Weiszfeld, E., Sur le point pour lequel la somme des distances de n points donnés est minimum, Tohoku Mathematical Journal, 43, 355-386, (1937) · Zbl 0017.18007
[2] Fernández, J.; Fernández, P.; Pelegrín, B., Continuous location model for siting a non-noxious undesirable facility within a geographical region, European Journal of Operational Research, 121, 2, 259-274, (2000) · Zbl 1040.90531 · doi:10.1016/s0377-2217(99)00216-7
[3] Lin, C. K. Y., Solving a location, allocation, and capacity planning problem with dynamic demand and response time service level, Mathematical Problems in Engineering, 2014, (2014) · doi:10.1155/2014/492340
[4] Redondo, J. L.; Fernández, J.; García, I.; Ortigosa, P. M., Heuristics for the facility location and design \((1 | 1)\) -centroid problem on the plane, Computational Optimization and Applications, 45, 1, 111-141, (2010) · Zbl 1198.91052 · doi:10.1007/s10589-008-9170-0
[5] Drezner, Z.; Hamacher, H. W., Facility Location: Applications and Theory, (2002), Berlin, Germany: Springer, Berlin, Germany · Zbl 0988.00044
[6] Francis, R. L.; McGinnis, L. F.; White, J. A., Facility Layout and Location: An Analytical Approach, (1992), Englewood Cliffs, NJ, USA: Prentice Hall, Englewood Cliffs, NJ, USA
[7] Love, R. F.; Morris, J. G.; Wesolowsky, G. O., Facilities Location: Models and Methods, (1988), New York, NY, USA: North-Holland, New York, NY, USA · Zbl 0685.90036
[8] Farahani, R. Z.; SteadieSeifi, M.; Asgari, N., Multiple criteria facility location problems: a survey, Applied Mathematical Modelling. Simulation and Computation for Engineering and Environmental Systems, 34, 7, 1689-1709, (2010) · Zbl 1193.90143 · doi:10.1016/j.apm.2009.10.005
[9] Nickel, S.; Puerto, J.; Rodríguez-Chía, A. M.; Figueira, J.; Greco, S.; Ehrgott, M., MCDM Location problems, Multiple Criteria Decision Analysis: State of the Art Surveys. Multiple Criteria Decision Analysis: State of the Art Surveys, Springer Series in Operations Research and Management, 761-795, (2005), Berlin, Germany: Springer, Berlin, Germany · Zbl 1072.90017
[10] Fernández, J.; Pelegrín, B.; Plastria, F.; Tóth, B., Planar location and design of a new facility with inner and outer competition: an interval lexicographical-like solution procedure, Networks and Spatial Economics, 7, 1, 19-44, (2007) · Zbl 1137.90580 · doi:10.1007/s11067-006-9005-4
[11] Fernández, J.; Tóth, B., Obtaining the efficient set of nonlinear biobjective optimization problems via interval branch-and-bound methods, Computational Optimization and Applications, 42, 3, 393-419, (2009) · Zbl 1211.90208 · doi:10.1007/s10589-007-9135-8
[12] Hamacher, H. W.; Nickel, S., Multicriteria planar location problems, European Journal of Operational Research, 94, 1, 66-86, (1996) · Zbl 0929.90047 · doi:10.1016/0377-2217(95)00186-7
[13] Romero-Morales, D.; Carrizosa, E.; Conde, E., Semi-obnoxious location models: a global optimization approach, European Journal of Operational Research, 102, 2, 295-301, (1997) · Zbl 0955.90054 · doi:10.1016/s0377-2217(97)00110-0
[14] Brimberg, J.; Juel, H., A minisum model with forbidden regions for locating a semi-desirable facility in the plane, Location Science, 6, 1–4, 109-120, (1998) · doi:10.1016/s0966-8349(98)00050-3
[15] Skriver, A. J.; Andersen, K. A., The bicriterion semi-obnoxious location (BSL) problem solved by an ϵ-approximation, European Journal of Operational Research, 146, 3, 517-528, (2003) · Zbl 1037.90043 · doi:10.1016/s0377-2217(02)00271-0
[16] Yapicioglu, H.; Smith, A. E.; Dozier, G., Solving the semi-desirable facility location problem using bi-objective particle swarm, European Journal of Operational Research, 177, 2, 733-749, (2006) · Zbl 1109.90051 · doi:10.1016/j.ejor.2005.11.020
[17] Ohsawa, Y.; Tamura, K., Efficient location for a semi-obnoxious facility, Annals of Operations Research, 123, 1–4, 173-188, (2003) · Zbl 1039.90035 · doi:10.1023/a:1026127430341
[18] Miettinen, K. S., Nonlinear Multiobjective Optimization, (1998), Boston, Mass, USA: Kluwer Academic Publishers, Boston, Mass, USA
[19] Fernández, J.; Tóth, B., Obtaining an outer approximation of the efficient set of nonlinear biobjective problems, Journal of Global Optimization, 38, 2, 315-331, (2007) · Zbl 1172.90482 · doi:10.1007/s10898-006-9132-y
[20] Czyzak, P.; Jaszkiewicz, A., Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization, Journal of Multi-Criteria Decision Analysis, 7, 1, 34-47, (1998) · Zbl 0904.90146
[21] Jaeggi, D.; Parks, G.; Kipouros, T.; Clarkson, J.; Coello, C. A. C.; Aguirre, A. H.; Zitzler, E., A multi-objective tabu search algorithm for constrained optimisation problems, Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization (EMO ’05), Springer
[22] Nebro, A. J.; Luna, F.; Alba, E.; Dorronsoro, B.; Durillo, J. J.; Beham, A., AbYSS: adapting scatter search to multiobjective optimization, IEEE Transactions on Evolutionary Computation, 12, 4, 439-457, (2008) · doi:10.1109/tevc.2007.913109
[23] Doerner, K.; Gutjahr, W. J.; Hartl, R. F.; Strauss, C.; Stummer, C., Pareto ant colony optimization: a metaheuristic approach to multiobjective portfolio selection, Annals of Operations Research, 131, 1–4, 79-99, (2004) · Zbl 1067.91028 · doi:10.1023/b:anor.0000039513.99038.c6
[24] Coello Coello, C. A.; Pulido, G. T.; Lechuga, M. S., Handling multiple objectives with particle swarm optimization, IEEE Transactions on Evolutionary Computation, 8, 3, 256-279, (2004) · doi:10.1109/tevc.2004.826067
[25] Coello, C. A. C., Evolutionary multi-objective optimization: a historical view of the field, IEEE Computational Intelligence Magazine, 1, 1, 28-36, (2006) · doi:10.1109/mci.2006.1597059
[26] Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 2, 182-197, (2002) · doi:10.1109/4235.996017
[27] Zitzler, E.; Laumanns, M.; Thiele, L.; Giannakoglou, K. C.; Tsahalis, D. T.; Périaux, J.; Papailiou, K. D.; Fogarty, T., SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization, Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, 95-100, (2002), Athens, Greece: International Center for Numerical Methods in Engineering (CIMNE), Athens, Greece
[28] Zhang, Q.; Li, H., MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary Computation, 11, 6, 712-731, (2007) · doi:10.1109/tevc.2007.892759
[29] Zhang, Q.; Li, H., Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II, IEEE Transactions on Evolutionary Computation, 13, 2, 284-302, (2009) · doi:10.1109/tevc.2008.925798
[30] Arrondo, A. G.; Redondo, J. L.; Fernández, J.; Ortigosa, P. M., Parallelization of a non-linear multi-objective optimization algorithm: application to a location problem, Applied Mathematics and Computation, 255, 114-124, (2015) · Zbl 1338.90210 · doi:10.1016/j.amc.2014.08.036
[31] Redondo, J. L.; Fernández, J.; Álvarez Hervás, J. D.; Arrondo, A. G.; Ortigosa, P. M., Approximating the Pareto-front of a planar bi-objective competitive facility location and design problem, Computers & Operations Research, (2014) · Zbl 1348.90413 · doi:10.1016/j.cor.2014.02.013
[32] Fernández, J.; Fernández, P.; Pelegrín, B., Estimating actual distances by norm functions: a comparison between the \(l_{k, p, \theta}\)-norm and the \(l_{b_1, b_2, \theta}\)-norm and a study about the selection of the data set, Computers and Operations Research, 29, 6, 609-623, (2002) · Zbl 0995.90058
[33] Heydari, R.; Melachrinoudis, E., Location of a semi-obnoxious facility with elliptic maximin and network minisum objectives, European Journal of Operational Research, 223, 2, 452-460, (2012) · Zbl 1292.90168 · doi:10.1016/j.ejor.2012.06.039
[34] Erkut, E.; Neuman, S., Analytical models for locating undesirable facilities, European Journal of Operational Research, 40, 3, 275-291, (1989) · Zbl 0668.90025 · doi:10.1016/0377-2217(89)90420-7
[35] Marsh, M. T.; Schilling, D. A., Equity measurement in facility location analysis: a review and framework, European Journal of Operational Research, 74, 1, 1-17, (1994) · Zbl 0800.90631 · doi:10.1016/0377-2217(94)90200-3
[36] Mandell, M. B., Modelling effectiveness-equity trade-offs in public service delivery systems, Management Science, 37, 4, 467-482, (1991) · doi:10.1287/mnsc.37.4.467
[37] Erkut, E., Inequality measures for location problems, Location Science, 1, 3, 199-217, (1993) · Zbl 0923.90101
[38] Krugman, P. R., Geography and Trade. Geography and Trade, Gaston Eyskens Lecture Series, (1991), Boston, Mass, USA: MIT Press, Boston, Mass, USA
[39] Drezner, T.; Drezner, Z.; Guyse, J., Equitable service by a facility: minimizing the Gini coefficient, Computers and Operations Research, 36, 12, 3240-3246, (2009) · Zbl 1176.90353 · doi:10.1016/j.cor.2009.02.019
[40] Fernández, J., New techniques for design and solution of continuous location models [Ph.D. thesis], (1999), Faculty of Mathematics, University of Murcia
[41] Solis, F. J.; Wets, R. J. B., Minimization by random search techniques, Mathematics of Operations Research, 6, 1, 19-30, (1981) · Zbl 0502.90070 · doi:10.1287/moor.6.1.19
[42] Durillo, J. J.; Nebro, A. J., JMetal: a Java framework for multi-objective optimization, Advances in Engineering Software, 42, 10, 760-771, (2011) · doi:10.1016/j.advengsoft.2011.05.014
[43] Fernández, J.; Pelegrín, B., Using interval analysis for solving planar single-facility location problems: new discarding tests, Journal of Global Optimization, 19, 1, 61-81, (2001) · Zbl 1168.90537 · doi:10.1023/a:1008315927737
[44] While, L.; Bradstreet, L.; Barone, L., A fast way of calculating exact hypervolumes, IEEE Transactions on Evolutionary Computation, 16, 1, 86-95, (2012) · doi:10.1109/tevc.2010.2077298
[45] Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C. M.; da Fonseca, V. G., Performance assessment of multiobjective optimizers: an analysis and review, IEEE Transactions on Evolutionary Computation, 7, 2, 117-132, (2003) · doi:10.1109/tevc.2003.810758
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.