de Fernex, Tommaso; Docampo, Roi Jacobian discrepancies and rational singularities. (English) Zbl 1334.14022 J. Eur. Math. Soc. (JEMS) 16, No. 1, 165-199 (2014). The canonical sheaf \(\omega_X\) of a smooth complex projective variety \(X\) has two main useful properties: it satisfies Kodaira vanishing and Serre duality. On a singular (say, normal and Cohen-Macaulay) variety, for Serre duality there is the dualizing sheaf \(\omega_X\), while Kodaira vanishing is satisfied by the Grauert-Riemenschneider sheaf \(f_* \omega_Y\), where \(f: Y \to X\) is a resolution of singularities. We have an inclusion \(f_* \omega_Y \subset \omega_X\), but in general it is strict. Intuitively, this means that a holomorphic \(n\)-form (\(n = \dim X\)) on the smooth locus of \(X\) need not extend to a holomorphic \(n\)-form on \(Y\). On the other hand, every \(n\)-form extends after multiplication with a function vanishing to sufficiently high order along the singular locus and this is quantified by the colon ideal sheaf \((f_* \omega_Y : \omega_X)\).The main result of the present paper (Theorem C) describes this colon ideal as a Jacobian multiplier ideal, for an arbitrary normal variety \(X\): \[ (f_* \omega_Y : \omega_X) := \{ g \in \mathcal O_X \;|\; g \cdot \omega_X \subset f_* \omega_Y \} = \mathcal J^{\diamond}(\mathfrak d_X^{-1}). \] To give a meaning to the term on the right-hand side, the authors consider the Jacobian discrepancy, which measures the difference between the Jacobian ideal of the resolution morphism and the Jacobian ideal of \(X\). Unlike the usual discrepancy, this definition does not need any \(\mathbb Q\)-Gorenstein assumption. For locally complete intersections, the Jacobian discrepancy coincides with the usual discrepancy, but for general \(\mathbb Q\)-Gorenstein varieties it does not. One should also remark that this notion of discrepancy is quite different from the one introduced by T. de Fernex and C. D. Hacon in [Compos. Math. 145, No. 2, 393–414 (2009; Zbl 1179.14003)], since asymptotic considerations are not taken into account. Once the definition of Jacobian discrepancy is in place, one may define the notions of J-canonical and J-log canonical pairs and Jacobian multiplier ideals \(\mathcal J^{\diamond}(\cdots)\) as usual.The ideal \(\mathfrak d_X \subset \mathcal O_X\) is called the lci-defect ideal of \(X\). It is defined as \(\sum_V \mathfrak d_{X, V}\), where the sum runs over all reduced locally complete intersection schemes \(V \supset X\) of the same dimension. For each such \(V\), we may write \(V = X \cup X'\), where \(X'\) is the union of all the irreducible components of \(V\) different from \(X\). Then \(\mathfrak d_{X, V}\) is defined as the ideal of \(X \cap X'\) in \(X\).Several further results are shown in the paper. Theorem B asserts that the Jacobian discrepancies can be read off from the jet schemes of the variety in question. Corollary 7.2 says that \(X\) has rational singularities if and only if \((X, \mathfrak d_X^{-1})\) is J-canonical and Cohen-Macaulay, while \(X\) is Du Bois and CM if and only if \((X, \mathfrak d_X^{-1})\) is J-log canonical and CM. For \(\mathbb Q\)-Gorenstein varieties, Theorem A gives a similar equivalence with \(\mathfrak d_X^{-1}\) replaced by \(\mathfrak d_{r, X}^{1/r} \cdot \mathfrak d_X^{-1}\), where \(\mathfrak d_{r, X}\) is the lci-defect ideal of level \(r\), depending on the choice of an integer \(r\) such that \(rK_X\) is Cartier.These results can be seen as converses to the theorems of Elkik and Kollár-Kovács that canonical singularities are rational, resp. that log canonical singularities are Du Bois. An example is also given to show that without the Cohen-Macaulay condition, \((X, \mathfrak d_X^{-1})\) J-canonical does not imply \(X\) Du Bois. Reviewer: Patrick Graf (Bayreuth) Cited in 2 ReviewsCited in 18 Documents MSC: 14J17 Singularities of surfaces or higher-dimensional varieties 14F18 Multiplier ideals 14E18 Arcs and motivic integration Keywords:discrepancy; Jacobian; adjunction; Nash blow-up; jet scheme; multiplier ideal; rational singularity; Du Bois singularity Citations:Zbl 1179.14003 PDFBibTeX XMLCite \textit{T. de Fernex} and \textit{R. Docampo}, J. Eur. Math. Soc. (JEMS) 16, No. 1, 165--199 (2014; Zbl 1334.14022) Full Text: DOI arXiv References: [1] Altman, A., Kleiman, S.: Introduction to Grothendieck Duality Theory. Lecture Notes in Math. 146, Springer (1970) · Zbl 0215.37201 · doi:10.1007/BFb0060932 [2] Ambro, F.: On minimal log discrepancies. Math. Res. Lett. 6, 573-580 (1999) · Zbl 0974.14007 · doi:10.4310/MRL.1999.v6.n5.a10 [3] Artin, M.: On isolated rational singularities of surfaces. Amer. J. Math. 88, 129-136 (1966) · Zbl 0142.18602 · doi:10.2307/2373050 [4] Blickle, M.: Multiplier ideals and modules on toric varieties. Math. Z. 248, 113-121 (2004) · Zbl 1061.14055 · doi:10.1007/s00209-004-0655-y [5] Bravo, A., Villamayor U., O.: A strengthening of resolution of singularities in char- acteristic zero. Proc. London Math. Soc. (3) 86, 327-357 (2003) · Zbl 1081.14019 · doi:10.1112/S0024611502013801 [6] de Fernex, T., Ein, L.: A vanishing theorem for log canonical pairs. Amer. J. Math. 132, 1205-1221 (2010) · Zbl 1205.14020 · doi:10.1353/ajm.2010.0008 [7] de Fernex, T., Ein, L., Ishii, S.: Divisorial valuations via arcs. Publ. RIMS Kyoto Univ. 44, 425-448 (2008) · Zbl 1162.14023 · doi:10.2977/prims/1210167333 [8] de Fernex, T., Ein, L., Mustat\?\?a, M.: Shokurov’s ACC conjecture for log canonical thresholds on smooth varieties. Duke Math. J. 152, 93-114 (2010) · Zbl 1189.14044 · doi:10.1215/00127094-2010-008 [9] de Fernex, T., Ein, L., Mustat\?\?a, M.: Log canonical thresholds on varieties with bounded singularities. In: Classification of Algebraic Varieties. EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 221-257 (2011) · Zbl 1215.14007 [10] de Fernex, T., Hacon, C.: Singularities on normal varieties. Compos. Math. 145, 393- 414 (2009) · Zbl 1179.14003 · doi:10.1112/S0010437X09003996 [11] Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integra- tion. Invent. Math. 135, 201-232 (1999) · Zbl 0928.14004 · doi:10.1007/s002220050284 [12] Du Bois, P.: Complexe de de Rham filtré d’une variété singuli‘ere. Bull. Soc. Math. France 109, 41-81 (1981) · Zbl 0465.14009 [13] Ein, L., Ishii, S., Mustat\?\?a, M.: Multiplier ideals via Mather discrepancy. arXiv:1107.2192 · Zbl 1369.14028 [14] Ein, L., Lazarsfeld, R., Mustat\?\?a, M.: Contact loci in arc spaces. Compos. Math. 140, 1229-1244 (2004) · Zbl 1060.14004 · doi:10.1112/S0010437X04000429 [15] Ein, L., Mustat\?\?a, M.: Inversion of adjunction for local complete intersection varieties. Amer. J. Math. 126, 1355-1365 (2004) · Zbl 1087.14012 · doi:10.1353/ajm.2004.0044 [16] Ein, L., Mustat\?\?a, M.: Jet schemes and singularities. In: Algebraic Geometry-Seattle 2005, Part 2, Proc. Sympos. Pure Math. 80, Amer. Math. Soc. 505-546 (2009) · Zbl 1181.14019 [17] Ein, L., Mustat\?\?a, M., Yasuda, T.: Jet schemes, log discrepancies and inversion of ad- junction. Invent. Math. 153, 519-535 (2003) · Zbl 1049.14008 · doi:10.1007/s00222-003-0298-3 [18] Eisenstein, E.: Generalizations of the restriction theorem for multiplier ideals. arXiv:1001.2841 [19] Elkik, R.: Rationalité des singularités canoniques. Invent. Math. 64, 1-6 (1981) · Zbl 0498.14002 · doi:10.1007/BF01393930 [20] Fuentes García, L., Pedreira, M.: Canonical geometrically ruled surfaces. Math. Nachr. 278, 240-257 (2005) · Zbl 1067.14030 · doi:10.1002/mana.200310238 [21] Grauert, H., Riemenschneider, O.: Verschwindungssätze für analytische Koho- mologiegruppen auf komplexen Räumen. Invent. Math. 11, 263-292 (1970) · Zbl 0202.07602 · doi:10.1007/BF01403182 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.