×

Jordan types for indecomposable modules of finite group schemes. (English) Zbl 1304.14058

The article under review studies the interplay between algebro-geometric notions related to \(\pi\)-points and structural features of the stable Auslander-Reiten quiver of a finite group scheme. The author shows that \(\pi\)-points give rise to a number of new invariants of the AR-quiver on one hand, and exploits combinatorial properties of AR-components to obtain information on \(\pi\)-points on the other. In particular, the new invariants turn out to be finer than those given by rank varieties and support varieties. Special attention is given to components containing Carlson modules, constantly supported modules, and endo-trivial modules.

MSC:

14L15 Group schemes
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alperin, J., Evens, L.: Representations, resolutions and Quillen’s dimension theorem. J. Pure Appl. Algebra 22, 1-9 (1981) · Zbl 0469.20008 · doi:10.1016/0022-4049(81)90079-7
[2] Andersen, H., Jantzen, J.: Cohomology of induced representations for algebraic groups. Math. Ann. 269, 487-525 (1984) · Zbl 0529.20027 · doi:10.1007/BF01450762
[3] Auslander, M., Reiten, I., Smalø, S.: Representation Theory of Artin Algebras. Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press (1995) · Zbl 0834.16001
[4] Benson, D.: Representations and Cohomology, I. Cambridge Stud. Adv. Math. 30, Cambridge Univ. Press (1991) · Zbl 0718.20001
[5] Benson, D.: Representations and Cohomology, II. Cambridge Stud. Adv. Math. 31, Cam- bridge Univ. Press (1991) · Zbl 0731.20001
[6] Benson, D.: Modules of constant Jordan type with one non-projective block. Algebr. Repre- sent. Theory 13, 315-318 (2010) · Zbl 1215.20013 · doi:10.1007/s10468-008-9124-3
[7] Carlson, J.: The variety of an indecomposable module is connected. Invent. Math. 77, 291-299 (1984) · Zbl 0543.20032 · doi:10.1007/BF01388448
[8] Carlson, J.: Constructing endotrivial modules. J. Pure Appl. Algebra 206, 83-110 (2006) · Zbl 1098.20004 · doi:10.1016/j.jpaa.2005.01.014
[9] Carlson, J., Friedlander, E.: Exact category of modules of constant Jordan type. In: Manin Festschrift, Progr. Math. 269, Birkhäuser, 267-290 (2010) · Zbl 1267.20059 · doi:10.1007/978-0-8176-4745-2_6
[10] Carlson, J., Friedlander, E., Pevtsova, J.: Modules of constant Jordan type. J. Reine Angew. Math. 614, 191-234 (2008) · Zbl 1144.20025 · doi:10.1515/CRELLE.2008.006
[11] Carlson, J., Lin, Z., Nakano, D., Parshall, B.: The restricted nullcone. In: Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math. 325, Amer. Math. Soc., 51-75 (2003) · Zbl 1059.17013
[12] Carlson, J., Thévenaz, J.: The classification of endo-trivial modules. Invent. Math. 158, 389- 411 (2004) · Zbl 1110.20004 · doi:10.1007/s00222-004-0385-0
[13] Cartan, H., Eilenberg, S.: Homological Algebra. Princeton Math. Ser. 19, Princeton Univ. Press, Princeton (1956) · Zbl 0075.24305
[14] Collingwood, D., McGovern, W.: Nilpotent Orbits in Semisimple Lie Algebras. Van Nostrand Reinhold, New York (1993) · Zbl 0972.17008
[15] Dade, E.: Endo-permutation modules over p-groups I. Ann. of Math. 107, 459-494 (1978) · Zbl 0395.16007 · doi:10.2307/1971125
[16] Dade, E.: Endo-permutation modules over p-groups II. Ann. of Math. 108, 317-346 (1978) · Zbl 0404.16003 · doi:10.2307/1971169
[17] Demazure, M., Gabriel, P.: Groupes Algébriques I. Masson/North-Holland (1970) · Zbl 0203.23401
[18] Drozd, Yu.: On the representations of the Lie algebra sl(2). Visn. Kiiv. Univ. Mat. i Mekh. 25, 70-77 (1983) · Zbl 0900.17002
[19] Erdmann, K.: On modules with cyclic vertices in the Auslander-Reiten quiver. J. Algebra 104, 289-300 (1986) · Zbl 0602.20011 · doi:10.1016/0021-8693(86)90216-4
[20] Erdmann, K.: Blocks of Tame Representation Type and Related Algebras. Lecture Notes in Math. 1428, Springer (1990) · Zbl 0696.20001 · doi:10.1007/BFb0084003
[21] Evens, L.: The Cohomology of Groups. Oxford Math. Monogr., Clarendon Press (1991) · Zbl 0742.20050
[22] Farnsteiner, R.: On the Auslander-Reiten quiver of an infinitesimal group. Nagoya Math. J. 160, 103-121 (2000) · Zbl 0976.16015
[23] Farnsteiner, R.: Polyhedral groups, McKay quivers, and the finite algebraic groups with tame principal blocks. Invent. Math. 166, 27-94 (2006) · Zbl 1115.20035 · doi:10.1007/s00222-006-0506-z
[24] Farnsteiner, R.: Support spaces and Auslander-Reiten components. In: Lie Algebras, Vertex Operator Algebras and Their Applications, Contemp. Math. 442, Amer. Math. Soc., 61-87 (2007) · Zbl 1185.16023
[25] Farnsteiner, R.: Group-graded algebras, extensions of infinitesimal groups, and applications. Transform. Groups 14, 127-162 (2009) · Zbl 1182.14052 · doi:10.1007/s00031-009-9049-x
[26] Farnsteiner, R., Röhrle, G., Voigt, D.: Infinitesimal unipotent group schemes of complexity 1. Colloq. Math. 89, 179-192 (2001) · Zbl 0989.16013 · doi:10.4064/cm89-2-3
[27] Farnsteiner, R., Skowroński, A.: Classification of restricted Lie algebras with tame principal block. J. Reine Angew. Math. 546, 1-45 (2002) · Zbl 0989.17011 · doi:10.1515/crll.2002.043
[28] Farnsteiner, R., Voigt, D.: On cocommutative Hopf algebras of finite representation type. Adv. Math. 155, 1-22 (2000) · Zbl 0981.16030 · doi:10.1006/aima.2000.1920
[29] Farnsteiner, R., Voigt, D.: On infinitesimal groups of tame representation type. Math. Z. 244, 479-513 (2003) · Zbl 1031.16022 · doi:10.1007/s00209-003-0491-5
[30] Fischer, G.: Die Köcher der Frobeniuskerne der SL2. Dissertation, Universität Bielefeld (1983)
[31] Fischman, D., Montgomery, S., Schneider, H.: Frobenius extensions of subalgebras of Hopf algebras. Trans. Amer. Math. Soc. 349, 4857-4895 (1996) · Zbl 0899.16020 · doi:10.1090/S0002-9947-97-01814-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.