Farkas, G.; Grushevsky, S.; Salvati Manni, R.; Verra, Alessandro Singularities of theta divisors and the geometry of \(\mathcal A_5\). (English) Zbl 1373.14043 J. Eur. Math. Soc. (JEMS) 16, No. 9, 1817-1848 (2014). Inside the moduli space \(\mathcal{A}_g\) of principally polarized abelian varieties (ppav’s), the condition that the theta divisor of a ppav be singular is of codimension \(1\). The locus where this holds is the well-known Andreotti-Mayer divisor \(N_0\). It consists of two irreducible components \(N_0 = \theta_{\mathrm{null}} \cup N_0'\), depending on whether the singularity occurs at a \(2\)-torsion point or not. The subloci of these components where the singularity is not an ordinary double point are denoted by \(\theta_{\mathrm{null}}^{g-1}\) and \({N_0'}^{g-1} =: H\), respectively. The authors explicitly compute the class \([H] \in CH^2(\mathcal{A}_g)\), and furthermore show that \(\theta_{\mathrm{null}}^{g-1} \subsetneq H\) for \(g \geq 5\), while \(\theta_{\mathrm{null}}^3 = H\) if \(g = 4\). It was previously known that \(\theta_{\mathrm{null}}^{g-1} \subset \theta_{\mathrm{null}} \cap N_0'\).The authors then proceed to investigate the situation more concretely in genus \(g = 5\). Here it is shown that \(H\) decomposes into two irreducible components \(H = \theta_{\mathrm{null}}^4 \cup H_1\), both of which are characterized as images under the Prym map \(P: \mathcal{R}_6 \to \mathcal{A}_5\) of loci of Prym curves satisfying certain explicit conditions. This description enables the authors to conclude that in fact both components are unirational.As an application of these results, the authors are able to determine the slope \(s(\overline{\mathcal{A}}_5) = 54/7\) of the perfect cone compactification of \(\mathcal{A}_5\) (in fact the slope is the same for all toroidal compactifications). The slope is attained by \(\overline{N_0'}\), and this divisor is shown to be rigid ({i.e.}, its Kodaira-Iitaka dimension is \(0\)). Reviewer: Fabian Müller (Berlin) Cited in 8 Documents MSC: 14K10 Algebraic moduli of abelian varieties, classification 14J10 Families, moduli, classification: algebraic theory 14K12 Subvarieties of abelian varieties 14H40 Jacobians, Prym varieties 14K25 Theta functions and abelian varieties 14H10 Families, moduli of curves (algebraic) Keywords:theta divisor; singularities; moduli space of prinicipally polarized abelian varieties; Prym variety; Andreotti-Mayer divisor; slope PDFBibTeX XMLCite \textit{G. Farkas} et al., J. Eur. Math. Soc. (JEMS) 16, No. 9, 1817--1848 (2014; Zbl 1373.14043) Full Text: DOI arXiv References: [1] Andreotti, A., Mayer, A. L.: On period relations for abelian integrals on algebraic curves. Ann. Scuola Norm. Sup. Pisa (3) 21, 189-238 (1967) · Zbl 0222.14024 [2] Arbarello, E., Cornalba, M., Griffiths, P. A., Harris, J.: Geometry of Algebraic Curves. Vol. I. Grundlehren Math. Wiss. 267, Springer, New York (1985) · Zbl 0559.14017 [3] Arbarello, E., De Concini, C.: On a set of equations characterizing Riemann matrices. Ann. of Math. 120, 119-140 (1984) · Zbl 0551.14016 · doi:10.2307/2007073 [4] Beauville, A.: Prym varieties and the Schottky problem. Invent. Math. 41, 149-196 (1977) · Zbl 0333.14013 · doi:10.1007/BF01418373 [5] Ciliberto, C., van der Geer, G.: The moduli space of abelian varieties and the singulari- ties of the theta divisor. In: Surveys Differential Geometry, VII, Int. Press, Somerville, MA, 61-81 (2000) · Zbl 1091.14012 [6] Ciliberto, C., van der Geer, G.: Andreotti-Mayer loci and the Schottky problem. Doc. Math. 13, 453-504 (2008) · Zbl 1164.14008 [7] Debarre, O.: Le lieu des variétés abéliennes dont le diviseur th\hat eta est singulier ‘a deux composantes. Ann. Sci. École Norm. Sup. (4) 25, 687-707 (1992) · Zbl 0781.14031 [8] Donagi, R.: The fibers of the Prym map. In: Curves, Jacobians, and Abelian Varieties (Amherst, MA, 1990), Contemp. Math. 136, Amer. Math. Soc., Providence, RI, 55- 125 (1992) · Zbl 0783.14025 [9] Donagi, R., Smith, R.: The structure of the Prym map. Acta Math. 146, 25-102 (1981) · Zbl 0538.14019 · doi:10.1007/BF02392458 [10] Ein, L., Lazarsfeld, R.: Singularities of theta divisors and the birational geometry of irregular varieties. J. Amer. Math. Soc. 10, 243-258 (1997) · Zbl 0901.14028 · doi:10.1090/S0894-0347-97-00223-3 [11] Eisenbud, D., Harris, J.: The Kodaira dimension of the moduli space of curves of genus \geq 23. Invent. Math. 90, 359-387 (1987) · Zbl 0631.14023 · doi:10.1007/BF01388710 [12] Farkas, G.: Gaussian maps, Gieseker-Petri loci and large theta-characteristics. J. Reine Angew. Math. 581, 151-173 (2005) · Zbl 1076.14035 · doi:10.1515/crll.2005.2005.581.151 [13] Farkas, G., Ludwig, K.: The Kodaira dimension of the moduli space of Prym varieties. J. Eur. Math. Soc. 12, 755-795 (2010) · Zbl 1193.14043 · doi:10.4171/JEMS/214 [14] Farkas, G., Verra, A.: Moduli of theta-characteristics via Nikulin surfaces. Math. Ann. 354, 465-496 (2012) · Zbl 1259.14033 · doi:10.1007/s00208-011-0739-z [15] Farkas, H.: Vanishing thetanulls and Jacobians. In: The Geometry of Riemann Surfaces and Abelian Varieties, Contemp. Math. 397, Amer. Math. Soc., Providence, RI, 37-53 (2006) · Zbl 1099.14020 [16] Freitag, E.: Siegelsche Modulfunktionen. Grundlehren Math. Wiss. 397, Springer, Berlin (1983) · Zbl 0498.10016 [17] van der Geer, G.: Cycles on the moduli space of abelian varieties. In: Moduli of Curves and Abelian Varieties, Aspects Math. E33, Vieweg, Braunschweig, 65-89 (1999) · Zbl 0974.14031 [18] Grushevsky, S., Salvati Manni, R.: Singularities of the theta divisor at points of order two. Int. Math. Res. Notices 2007, no. 15, art. ID rnm045, 15 pp. · Zbl 1132.14026 · doi:10.1093/imrn/rnm045 [19] Grushevsky, S., Salvati Manni, R.: Jacobians with a vanishing theta-null in genus 4. Israel J. Math. 164, 303-315 (2008) · Zbl 1148.14014 · doi:10.1007/s11856-008-0031-4 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.