Backelin, Erik; Kremnitzer, Kobi Singular localization of \(\mathfrak{g}\)-modules and applications to representation theory. (English) Zbl 1380.17006 J. Eur. Math. Soc. (JEMS) 17, No. 11, 2763-2787 (2015). This paper develops a singular version of Beilinson-Bernstein localization theory for a complex semisimple Lie algebra. The main result is a singular version of the localization theorem which connects Lie algebra modules having a prescribed (singular) central character with certain twisted differential operators. As an application, various known results are reproved. In particular, a theorem of Bernstein and S. Gelfand which connects category \(\mathcal{O}\) to Harish-Chandra bimodules; and a theorem of Miličić and Soergel which connects category \(\mathcal{O}\) to a certain category of Whittaker modules. Reviewer: Volodymyr Mazorchuk (Uppsala) Cited in 6 Documents MSC: 17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) 14F10 Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials 14L35 Classical groups (algebro-geometric aspects) Keywords:Lie algebra; localization; category \(\mathcal{O}\); translation functor; singular block; Whittaker module × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Backelin, E.: Representation of the category O in Whittaker categories. Int. Math. Res. Notices 1997, no. 4, 153-172 · Zbl 0974.17007 · doi:10.1155/S1073792897000111 [2] Backelin, E., Kremnizer, K.: Quantum flag varieties, equivariant D-modules, and lo- calization of quantum groups. Adv. Math. 203, 408-429 (2006) · Zbl 1165.17304 · doi:10.1016/j.aim.2005.04.012 [3] Backelin, E., Kremnizer, K.: Localization of a quantum group at a root of unity. J. Amer. Math. Soc. 21, 1001-1018 (2008) · Zbl 1248.14003 · doi:10.1090/S0894-0347-08-00608-5 [4] Beilinson, A., Bernstein, J.: Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I 292, 15-18 (1981) · Zbl 0476.14019 [5] Beilinson, A., Bernstein, J.: Proof of Jantzen’s conjecture. Adv. Soviet Math. 19, part 1, 1-50 (1993) · Zbl 0790.22007 [6] Beilinson, A., Ginzburg, V.: Wall-crossing functors and D-modules. Represent. Theory 3, 1-31 (1999) · Zbl 0910.05068 · doi:10.1090/S1088-4165-99-00063-1 [7] Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Amer. Math. Soc. 9, 473-527 (1996) · Zbl 0864.17006 · doi:10.1090/S0894-0347-96-00192-0 [8] Bernstein, J., Gelfand, S. I.: Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Compos. Math. 41, 245-285 (1981) · Zbl 0445.17006 [9] Bezrukavnikov, R.: Noncommutative counterparts of the Springer resolution. In: Proc. I.C.M., Madrid, Vol. 2, 1119-1144 (2006) · Zbl 1135.17011 [10] Bezrukavnikov, R., Mirković, I., Rumynin, D.: Localization of modules for a semi- simple Lie algebra in prime characteristic. Ann. of Math. (2) 167, 945-991 (2008) · Zbl 1220.17009 · doi:10.4007/annals.2008.167.945 [11] Bezrukavnikov, R., Mirković, I., Rumynin, D.: Singular localization and intertwining operators for Lie algebras in prime characteristic. Nagoya Math. J. 184, 1-55 (2006) · Zbl 1125.17006 [12] Bezrukavnikov, R., Mirković, I.: Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution (with an appendix by E. Sommers). Ann. of Math. 178, 835-919 (2013) · Zbl 1293.17021 · doi:10.4007/annals.2013.178.3.2 [13] Borho, W., Brylinski, J.-L.: Differential operators on homogeneous spaces. I. Irre- ducibility of the associated variety for annihilators of induced modules. Invent. Math. 69, 437-476 (1982) · Zbl 0504.22015 · doi:10.1007/BF01389364 [14] Dixmier, J.: Enveloping Algebras. North-Holland, Amsterdam (1977) · Zbl 0339.17007 [15] Hotta, R., Takeuchi, R. K., Tanisaki, T.: D-Modules, Perverse Sheaves, and Represen- tation Theory. Progr. Math. 236, Birkhäuser (2008) · Zbl 1136.14009 [16] Humphreys, J.: Representations of Semisimple Lie Algebras in the BGG Category O. Grad. Stud. Math. 94, Amer. Math. Soc. (2008) · Zbl 1177.17001 [17] Jantzen, J. C. : Representations of Algebraic Groups. Amer. Math. Soc. (2003) · Zbl 1034.20041 [18] Kostant, B.: Lie group representations on polynomial rings, Amer. J. Math. 85, 327-374 (1963) · Zbl 0124.26802 · doi:10.2307/2373130 [19] Kostant, B.: On Whittaker vectors and representation theory. Invent. Math. 48, 101-184 (1978) · Zbl 0405.22013 · doi:10.1007/BF01390249 [20] Matsushima, Y.: Espaces homog‘enes de Stein des groupes de Lie complexes. Nagoya Math. J. 16, 205-218 (1960) · Zbl 0094.28201 [21] Mili\check cić, D., Soergel, W.: The composition series of modules induced from Whittaker modules. Comment. Math. Helv. 72, 503-520 (1997) · Zbl 0956.17004 · doi:10.1007/s000140050031 [22] Soergel, W.: Équivalence de certaines catégories de g-modules. C. R. Acad. Sci. Paris Sér. I 303, 725-727 (1986) · Zbl 0623.17005 [23] Webster, B.: Singular blocks of parabolic categoryO and finite W-algebras. J. Pure Appl. Algebra 215, 2797-2804 (2011) · Zbl 1295.17009 · doi:10.1016/j.jpaa.2011.03.020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.