Parusiński, Adam; Păunescu, Laurenţiu Lipschitz stratification of complex hypersurfaces in codimension 2. (English) Zbl 1541.14004 J. Eur. Math. Soc. (JEMS) 25, No. 5, 1743-1781 (2023). Zariski equisingularity is known to imply bi-Lipschitz triviality in the case of plane curve singularities, i.e., such families are topologically simple in a bi-Lipschitz sense. The goal of the article is to demonstrate that Zariski equisingular families of surface singularities in \(\mathbb{C}^3\) also display bi-Lipschitz triviality by extending to such singularities.The paper explores the conjecture by J.-P. Henry and Mostowski that Zariski equisingular families of surface singularities in \(\mathbb{C}^3\) could naturally lead to Lipschitz stratifications. The main theorem says that generically linearly Zariski equisingular families of surface singularities in \(\mathbb{C}^3\) are bi-Lipschitz trivial. This theorem is proved using local parameterizations of geometric constructs. Reviewer: Meral Tosun (İstanbul) Cited in 1 Document MSC: 14B05 Singularities in algebraic geometry 32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects) 32S15 Equisingularity (topological and analytic) 32B15 Analytic subsets of affine space Keywords:Zariski equisingularity; polar curves, Lipschitz stratifications × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] S /. Then it is enough to extend vj S to a Lipschitz vector field on S [ 0 , since then such an extension defines a Lipschitz vector field on S [ .s/ [ 0 .s/ for every s sufficiently small, with the Lipschitz constant independent of s. Case 2: dist. .s/; 0 .s// dist. 0 .s/; [2] S /. Then it suffices to extend v from to a Lip-schitz vector field on [ 0 . Note that we may suppose that on both arcs , 0 we have y D O.x/, z D O.x/, that is, they are in the form (32). Indeed, by the Transversality Assumptions the variable z restricted to an arc in X cannot dominate x and y, that is, x D o.z/; [3] small. This is a change of coordinates in the target of the projection .x; y; z; t / 7 ! .x; y; t / and affects neither the discriminant locus nor Zariski’s equisingularity. To make the proof more precise we will use the constant “ of Definition 4.1 and denote the resulting union of polar wedges and the singular set by P W ” . If both .s/; 0 .s/ belong to P W ” then the claim follows from the first part of the proof (Section 6). In Case 1, given a stratified Lipschitz vector field v onto S we extend it on 0 . [4] By Proposition 9.1 we may suppose that dist. .s/; C j / & s m j for every j , and there-fore, for b small, say b Ä ”, dist. .s/; C j / dist. .s/; [5] Ä ”=2. Thus there exists a quasi-wing QW containing 0 and moreover dist. 0 .s/; [6] S / D dist. b 0 . 0 .s//; b 0 / s l , where l D max ¹max l i ; max r k º and b 0 denotes the discrim-inant of b 0 . Then there is a Lipschitz extension of v to QW by Proposition 9.4. Similarly, in Case 2 we may suppose dist. .s/; C j / dist. 0 .s/; C j / & s m j for every j , since otherwise, by Proposition 9.1, both .s/; 0 .s/ belong to P W ” . Then, choosing b appropriately, we may suppose that dist. b . .s//; b . 0 .s/// dist. .s/; 0 .s// s l : [7] Let QW be a quasi-wing containing . It always exists by Corollary 7.8, and 0 is contained either in QW or in another quasi-wing QW 0 such that QW and QW 0 are nicely- [8] Birbrair, L., Neumann, W. D., Pichon, A.: The thick-thin decomposition and the bilipschitz classification of normal surface singularities. Acta Math. 212, 199-256 (2014) Zbl 1303.14016 MR 3207758 · Zbl 1303.14016 [9] Briançon, J., Henry, J. P. G.: Équisingularité générique des familles de surfaces à singularité isolée. Bull. Soc. Math. France 108, 259-281 (1980) Zbl 0482.14004 MR 606093 · Zbl 0482.14004 [10] Cubides Kovacsisc, P., Halupczok, I.: Arc-wise analytic t-stratifications. arXiv:2106.11289 (2021) [11] Federer, H.: Geometric Measure Theory. Grundlehren Math. Wiss. 153, Springer, New York (1969) Zbl 0176.00801 MR 0257325 · Zbl 0176.00801 [12] Fernández de Bobadilla, J., Fernandes, A., Sampaio, J. E.: Multiplicity and degree as bi-Lipschitz invariants for complex sets. J. Topol. 11, 958-966 (2018) Zbl 1409.32024 MR 3989434 · Zbl 1409.32024 [13] Halupczok, I., Yin, Y.: Lipschitz stratifications in power-bounded o-minimal fields. J. Eur. Math. Soc. 20, 2717-2767 (2018) Zbl 06965903 MR 3861807 · Zbl 1522.03140 [14] Luengo, I.: An example concerning a question of Zariski. Bull. Soc. Math. France 113, 379-386 (1985) Zbl 0605.14013 MR 850774 · Zbl 0605.14013 [15] McShane, E. J.: Extension of range of functions. Bull. Amer. Math. Soc. 40, 837-842 (1934) Zbl 0010.34606 MR 1562984 · JFM 60.0973.02 [16] Mostowski, T.: Lipschitz equisingularity. Dissertationes Math. (Rozprawy Mat.) 243, 46 pp. (1985) Zbl 0578.32020 MR 808226 [17] Mostowski, T.: Tangent cones and Lipschitz stratifications. In: Singularities (Warszawa, 1985), Banach Center Publ. 20, PWN, Warszawa, 303-322 (1988) Zbl 0662.32012 MR 1101848 · Zbl 0662.32012 [18] Neumann, W. D., Pichon, A.: Lipschitz geometry of complex surfaces: analytic invariants and equisingularity. arXiv:1211.4897 (2012) [19] Nguyen, N., Valette, G.: Lipschitz stratifications in o-minimal structures. Ann. Sci. École Norm. Sup. (4) 49, 399-421 (2016) Zbl 1353.32011 MR 3481354 · Zbl 1353.32011 [20] Parusiński, A.: Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble) 38, 189-213 (1988) Zbl 0631.32006 MR 978246 · Zbl 0631.32006 [21] Parusiński, A.: Lipschitz stratification. In: Global Analysis in Modern Mathematics (Orono, ME, 1991; Waltham, MA, 1992), Publish or Perish, Houston, TX, 73-89 (1993) Zbl 0932.32010 MR 1278751 · Zbl 0932.32010 [22] Parusiński, A.: Integrability of some functions on semi-analytic sets. In: Singularités Franco-Japonaises, Sémin. Congr. 10, Soc. Math. France, Paris, 243-254 (2005) Zbl 1084.32007 MR 2145958 · Zbl 1084.32007 [23] Parusiński, A.: Algebro-geometric equisingularity of Zariski. In: Handbook of Geometry and Topology of Singularities II, J. L. Cisneros-Molina et al. (eds.), Springer, 177-222 (2021) Zbl 07464608 MR 4261550 · Zbl 1486.32011 [24] Parusiński, A., Pȃunescu, L.: Arc-wise analytic stratification, Whitney fibering conjecture and Zariski equisingularity. Adv. Math. 309, 254-305 (2017) Zbl 1375.32048 MR 3607278 · Zbl 1375.32048 [25] Pham, F.: Fractions lipschitziennes et saturation de Zariski des algèbres analytiques com-plexes. In: Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, 649-654 (1971) Zbl 0245.32003 MR 0590058 · Zbl 0245.32003 [26] Siebenmann, L., Sullivan, D.: On complexes that are Lipschitz manifolds. In: Geometric Topo-logy (Athens, GA, 1977), Academic Press, New York, 503-525 (1979) Zbl 0478.57008 MR 537747 · Zbl 0478.57008 [27] Speder, J. P.: Équisingularité et conditions de Whitney. Amer. J. Math. 97, 571-588 (1975) Zbl 0323.14006 MR 444665 · Zbl 0323.14006 [28] Teissier, B.: The hunting of invariants in the geometry of discriminants. In: Real and Complex Singularities (Oslo, 1976), 565-678 (1977) Zbl 0388.32010 MR 0568901 · Zbl 0388.32010 [29] Teissier, B.: Variétés polaires. II. Multiplicités polaires, sections planes, et conditions de Whit-ney. In: Algebraic Geometry (La Rábida, 1981), Lecture Notes in Math. 961, Springer, Berlin, 314-491 (1982) Zbl 0585.14008 MR 708342 · Zbl 0585.14008 [30] Valette, G.: Lipschitz triangulations. Illinois J. Math. 49, 953-979 (2005) Zbl 1154.14323 MR 2210270 · Zbl 1154.14323 [31] Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36, 63-89 (1934) Zbl 60.0217.01 MR 1501735 · JFM 60.0217.01 [32] Whitney, H.: Tangents to an analytic variety. Ann. of Math. (2) 81, 496-549 (1965) Zbl 0152.27701 MR 192520 · Zbl 0152.27701 [33] Zariski, O.: Studies in equisingularity. I. Equivalent singularities of plane algebroid curves. Amer. J. Math. 87, 507-536 (1965) Zbl 0132.41601 MR 177985 · Zbl 0132.41601 [34] Zariski, O.: Studies in equisingularity. II. Equisingularity in codimension 1 (and characteristic zero). Amer. J. Math. 87, 972-1006 (1965) Zbl 0146.42502 MR 191898 · Zbl 0146.42502 [35] Zariski, O.: On equimultiple subvarieties of algebroid hypersurfaces. Proc. Nat. Acad. Sci. U.S.A. 72, 1425-1426 (1975) Zbl 0304.14008 MR 389894 · Zbl 0304.14008 [36] Zariski, O.: Foundations of a general theory of equisingularity on r-dimensional algebroid and algebraic varieties, of embedding dimension r C 1. Amer. J. Math. 101, 453-514 (1979) Zbl 0417.14008 MR 528001 · Zbl 0417.14008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.