×

Some examples of 5 and 7 descent for elliptic curves over \(\mathbb{Q}\). (English) Zbl 1007.11031

Let \(E/K\) be an elliptic curve defined over a number field \(K\). Although there is no known algorithm to compute the Mordell-Weil group \(E(K)\) of \(E/K\), the proof of the Mordell-Weil theorem gives an effective upper bound for the order of \(E(K)/nE(K)\) for an integer \(n\geq 2\). This yields an upper bound on the rank of \(E(K)\), which is an overestimate precisely whenever \(\text{ Ш}(E/K)\) contains nontrivial \(n\)-torsion. This type of calculation is known as \(n\)-descent. A great deal of work has already been done for \(2\) and \(3\)-descents. In this paper the author addresses the question of \(5\) and \(7\)-descents for special types of elliptic curves. Namely, those which admit an isogeny \(E\to E'\) of degree 5 or 7 and also such that \(E'\) admits a \(K\)-rational point of order 5 or 7. A result of J.-P. Serre [Invent. Math. 15, 259-331 (1972; Zbl 0235.14012)] shows that this latter condition is always satisfied when \(E\) and \(E'\) are semi-stable.
The author starts by giving an explicit example of a point of order 5 on \(\text{ Ш}(E/K)\) and then makes a 2-descent, using J. E. Cremona’s program mwrank [mwrank, a program for 2-descent elliptic curves over \(\mathbb Q\), http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs], in order to show that \(E'(\mathbb Q)\cong\mathbb Z/5\mathbb Z\). He then performs similar calculations for all pairs of elliptic curves \(E\) and \(E'\) appearing in J. E. Cremona’s tables [Modular elliptic curve data for conductor up to 5300, http://www.maths.nottingham.ac.uk/personal/jec/ftp/data] of conductor \(\leq 5300\). He explicitly obtains and lists examples for curves for which \(\text{ Ш}(E/\mathbb Q)\cong(\mathbb Z/5\mathbb Z)^2\). Analogous calculations are done for \(n=7\).

MSC:

11G05 Elliptic curves over global fields
14G05 Rational points

Citations:

Zbl 0235.14012

Software:

ecdata; mwrank
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. Bölling: Die Ordnung der Schafarewitsch-Tate-Gruppe kann beliebig gross wer- den. Math. Nachr. 67 , 157-179 (1975) · Zbl 0314.14008 · doi:10.1002/mana.19750671003
[2] J.W.S. Cassels: Arithmetic on curves of genus 1, VI. The Tate-Shafarevich group can be arbitrarily large. J. Reine Angew. Math. 214/215 , 65-70 (1964) · Zbl 0236.14012 · doi:10.1515/crll.1964.214-215.65
[3] J.W.S. Cassels: Arithmetic on curves of genus 1, VIII. On conjectures of Birch and Swinnerton-Dyer. J. Reine Angew. Math. 217 , 180-199 (1965) · Zbl 0241.14017 · doi:10.1515/crll.1965.217.180
[4] J.W.S. Cassels: Lectures on elliptic curves. LMSST 24 : Cambridge University Press 1991 · Zbl 0752.14033
[5] J.W.S. Cassels, A. Fröhlich (eds.): Algebraic number theory. Academic Press 1967 · Zbl 0153.07403
[6] I. Connell: Calculating root numbers of elliptic curves over Q . Manuscripta Math. 82 , 93-104 (1994) · Zbl 0805.14017 · doi:10.1007/BF02567689
[7] J.E. Cremona, B. Mazur: Visualizing elements in the Shafarevich-Tate group. Exp. Math. 9 (1), 13-28 (2000) · Zbl 0972.11049 · doi:10.1080/10586458.2000.10504633
[8] J.E. Cremona: Algorithms for modular elliptic curves (second edition). Cambridge University Press 1997
[9] J.E. Cremona: mwrank, a program for 2-descent on elliptic curves over Q . See http://www.maths.nottingham.ac.uk/personal/jec/ftp/progs
[10] J.E. Cremona: Modular elliptic curve data for conductors up to 5300. See http://www.maths.nottingham.ac.uk/personal/jec/ftp/data
[11] T.A. Fisher: On 5 and 7 descents for elliptic curves. Cambridge PhD Thesis (2000)
[12] H. Halberstam, H.-E. Richert: Sieve methods. LMS Monographs 4 : Academic Press 1974 · Zbl 0298.10026
[13] K. Hulek: Projective geometry of elliptic curves. Soc. Math. de France, Astérisque 137 (1986) · Zbl 0602.14024
[14] F. Klein: Über die Transformation siebenter Ordnung der elliptischen Funktionen. Math. Ann. 14 , 428-471 (1879). English translation in [Le] 287-331 · JFM 11.0297.01
[15] K. Kramer: A family of semistable elliptic curves with large Tate-Shafarevich groups. Proc. Am. Math. Soc. 89 , 379-386 (1983) · Zbl 0567.14018 · doi:10.2307/2045480
[16] S. Levy (ed.): The eightfold way, the beauty of Klein’s quartic curve. MSRI Publi- cations 35 , Cambridge University Press 1999 · Zbl 0941.00006
[17] M. DeLong: A formula for the selmer group of a rational three-isogeny (1999) · Zbl 1009.11037 · doi:10.4064/aa105-2-2
[18] B. Mazur: Arithmetic on curves. Bull. Am. Math. Soc. 14 , 207-259 (1986) · Zbl 0593.14021 · doi:10.1090/S0273-0979-1986-15430-3
[19] B. Mazur: On the passage from local to global in number theory. Bull. Am. Math. Soc. 29 , 14-50 (1993) · Zbl 0813.14016 · doi:10.1090/S0273-0979-1993-00414-2
[20] J.S. Milne: Arithmetic duality theorems. Persp. in Math. 1 . Academic Press 1986 · Zbl 0613.14019
[21] P. Monsky: Generalizing the Birch-Stephens theorem. Math. Z. 221 , 415-420 (1996) · Zbl 0853.11048 · doi:10.1007/PL00004518
[22] D. Mumford: On the equations defining abelian varieties. I. Invent. math. 1 , 287-354 (1966) · Zbl 0219.14024 · doi:10.1007/BF01389737
[23] D. Mumford: Abelian varieties. TIFR Studies in Math. 5 : Oxford University Press 1970 · Zbl 0223.14022
[24] C.H. O’Neil: Jacobians of curves of genus one. Harvard PhD thesis (1999)
[25] D.E. Rohrlich: Variation of the root number in families of elliptic curves. Compositio Math. 87 , 119-151 (1993) · Zbl 0791.11026
[26] J.-P. Serre: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. math. 15 , 259-331 (1972) · Zbl 0235.14012 · doi:10.1007/BF01405086
[27] J.-P. Serre: Local fields. GTM 67 . Springer 1979 201
[28] J.H. Silverman: The arithmetic of elliptic curves. GTM 106 . Springer 1986 · Zbl 0585.14026
[29] J.H. Silverman: Advanced topics in the arithmetic of elliptic curves. GTM 151 . Springer 1994 · Zbl 0911.14015
[30] J. Tate: Duality theorems in Galois cohomology over number fields. Proc. Intern. Congress Math. Stockholm (1962), 288-295 · Zbl 0126.07002
[31] J. Tate: The arithmetic of elliptic curves. Invent. math. 23 , 179-206 (1974) · Zbl 0296.14018 · doi:10.1007/BF01389745
[32] J. Vélu: Isogénies entre courbes elliptiques. C. R. Acad. Sci. Paris 273 , 238-241 (1971) · Zbl 0225.14014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.