Adamu, A.; Kitkuan, D.; Padcharoen, A.; Chidume, C. E.; Kumam, P. Inertial viscosity-type iterative method for solving inclusion problems with applications. (English) Zbl 07478808 Math. Comput. Simul. 194, 445-459 (2022). MSC: 65-XX 47-XX PDF BibTeX XML Cite \textit{A. Adamu} et al., Math. Comput. Simul. 194, 445--459 (2022; Zbl 07478808) Full Text: DOI
Chidume, C. E.; Adamu, A.; Kumam, P.; Kitkuan, D. Generalized hybrid viscosity-type forward-backward splitting method with application to convex minimization and image restoration problems. (English) Zbl 07483531 Numer. Funct. Anal. Optim. 42, No. 13, Part 1, 1586-1607 (2021). MSC: 47H20 49M20 49M25 49M27 47J25 47H05 PDF BibTeX XML Cite \textit{C. E. Chidume} et al., Numer. Funct. Anal. Optim. 42, No. 13, Part 1, 1586--1607 (2021; Zbl 07483531) Full Text: DOI
Rezapour, Shahram; Zakeri, Seyyed Hasan Implicit iterative algorithms for \(\alpha \)-inverse strongly accretive operators in Banach spaces. (English) Zbl 1478.47085 J. Nonlinear Convex Anal. 20, No. 8, 1547-1560 (2019). MSC: 47J25 47H06 49J40 PDF BibTeX XML Cite \textit{S. Rezapour} and \textit{S. H. Zakeri}, J. Nonlinear Convex Anal. 20, No. 8, 1547--1560 (2019; Zbl 1478.47085) Full Text: Link
Wei, Li; Duan, Liling A new iterative algorithm for the sum of two different types of finitely many accretive operators in Banach space and its connection with capillarity equation. (English) Zbl 1346.47072 Fixed Point Theory Appl. 2015, Paper No. 25, 19 p. (2015). MSC: 47J25 47H06 47N20 PDF BibTeX XML Cite \textit{L. Wei} and \textit{L. Duan}, Fixed Point Theory Appl. 2015, Paper No. 25, 19 p. (2015; Zbl 1346.47072) Full Text: DOI
Wu, Zhitao; Yao, Yonghong; Liou, Yeong-Cheng; Li, Hong-Jun A Korpelevich-like algorithm for variational inequalities. (English) Zbl 1295.47101 J. Inequal. Appl. 2013, Paper No. 76, 10 p. (2013). Reviewer: Hengyou Lan (Zigong) MSC: 47J25 47H05 47J20 PDF BibTeX XML Cite \textit{Z. Wu} et al., J. Inequal. Appl. 2013, Paper No. 76, 10 p. (2013; Zbl 1295.47101) Full Text: DOI
Hu, Lianggen; Wang, Zhao; Wang, Jinping Strong convergence for nonexpansive mappings and \(\alpha\)-inverse-strongly accretive operators in Banach spaces. (Chinese. English summary) Zbl 1229.47112 Acta Anal. Funct. Appl. 12, No. 3, 221-227 (2010). MSC: 47J25 47H09 47H06 47H10 PDF BibTeX XML Cite \textit{L. Hu} et al., Acta Anal. Funct. Appl. 12, No. 3, 221--227 (2010; Zbl 1229.47112) Full Text: DOI
Ali, Bashir Iterative approximation of common fixed points for families of nonexpansive mappings and solutions of variational inequalities. (English) Zbl 1300.47086 Adv. Nonlinear Var. Inequal. 12, No. 2, 73-89 (2009). MSC: 47J25 47H09 PDF BibTeX XML Cite \textit{B. Ali}, Adv. Nonlinear Var. Inequal. 12, No. 2, 73--89 (2009; Zbl 1300.47086)
Zegeye, Habtu; Shahzad, Naseer Strong convergence theorems for a common zero of a countably infinite family of \(\alpha \)-inverse strongly accretive mappings. (English) Zbl 1221.47137 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 1-2, 531-538 (2009). MSC: 47J25 47H06 47H10 PDF BibTeX XML Cite \textit{H. Zegeye} and \textit{N. Shahzad}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71, No. 1--2, 531--538 (2009; Zbl 1221.47137) Full Text: DOI
Morales, Claudio H. Existence theorems for strongly accretive operators in Banach spaces. (English) Zbl 1027.47045 Agarwal, Ravi P. (ed.) et al., Set valued mappings with applications in nonlinear analysis. London: Taylor & Francis. Ser. Math. Anal. Appl. 4, 361-368 (2002). Reviewer: Peter Zabreiko (Minsk) MSC: 47H06 PDF BibTeX XML Cite \textit{C. H. Morales}, Ser. Math. Anal. Appl. 4, 361--368 (2002; Zbl 1027.47045)
Jung, Jong Soo Iteration processes with errors for nonlinear equations involving \(\alpha\)-strongly accretive operators in Banach spaces. (English) Zbl 1051.47050 EAMJ, East Asian Math. J. 17, No. 2, 349-365 (2001). Reviewer: Gheorghe Moroşanu (Budapest) MSC: 47J25 47H06 PDF BibTeX XML Cite \textit{J. S. Jung}, EAMJ, East Asian Math. J. 17, No. 2, 349--365 (2001; Zbl 1051.47050)
Morales, Claudio H.; Chidume, Charles E. Convergence of the steepest descent method for accretive operators. (English) Zbl 0937.47057 Proc. Am. Math. Soc. 127, No. 12, 3677-3683 (1999). Reviewer: U.Kosel (Freiberg) MSC: 47H10 47J25 65J15 PDF BibTeX XML Cite \textit{C. H. Morales} and \textit{C. E. Chidume}, Proc. Am. Math. Soc. 127, No. 12, 3677--3683 (1999; Zbl 0937.47057) Full Text: DOI