Masaki, Satoshi; Murphy, Jason; Segata, Jun-Ichi Asymptotic stability of solitary waves for the \(1d\) NLS with an attractive delta potential. (English) Zbl 07689309 Discrete Contin. Dyn. Syst. 43, No. 6, 2137-2185 (2023). MSC: 35Q55 PDF BibTeX XML Cite \textit{S. Masaki} et al., Discrete Contin. Dyn. Syst. 43, No. 6, 2137--2185 (2023; Zbl 07689309) Full Text: DOI arXiv OpenURL
Fernández, Francisco M. Variational approach to the Schrödinger equation with a delta-function potential. (English) Zbl 07669282 Eur. J. Phys. 43, No. 2, Article ID 025401, 7 p. (2022). MSC: 81-XX PDF BibTeX XML Cite \textit{F. M. Fernández}, Eur. J. Phys. 43, No. 2, Article ID 025401, 7 p. (2022; Zbl 07669282) Full Text: DOI arXiv OpenURL
Samar, M. I.; Tkachuk, V. M. Regularization of \(\delta^\prime\) potential in general case of deformed space with minimal length. (English) Zbl 07650517 J. Phys. A, Math. Theor. 55, No. 41, Article ID 415201, 14 p. (2022). MSC: 81-XX 35-XX PDF BibTeX XML Cite \textit{M. I. Samar} and \textit{V. M. Tkachuk}, J. Phys. A, Math. Theor. 55, No. 41, Article ID 415201, 14 p. (2022; Zbl 07650517) Full Text: DOI arXiv OpenURL
Loran, Farhang; Mostafazadeh, Ali Singularity-free treatment of delta-function point scatterers in two dimensions and its conceptual implications. (English) Zbl 1507.82036 J. Phys. A, Math. Theor. 55, No. 30, Article ID 305303, 16 p. (2022). MSC: 82B28 PDF BibTeX XML Cite \textit{F. Loran} and \textit{A. Mostafazadeh}, J. Phys. A, Math. Theor. 55, No. 30, Article ID 305303, 16 p. (2022; Zbl 1507.82036) Full Text: DOI arXiv OpenURL
Pankrashkin, Konstantin; Vogel, Marco On Schrödinger operators with \(\delta^\prime\)-potentials supported on star graphs. (English) Zbl 1507.81081 J. Phys. A, Math. Theor. 55, No. 29, Article ID 295201, 22 p. (2022). MSC: 81Q05 81Q10 35P15 34L15 PDF BibTeX XML Cite \textit{K. Pankrashkin} and \textit{M. Vogel}, J. Phys. A, Math. Theor. 55, No. 29, Article ID 295201, 22 p. (2022; Zbl 1507.81081) Full Text: DOI arXiv OpenURL
Golovaty, Yuriy 2D Schrödinger operators with singular potentials concentrated near curves. (English) Zbl 1496.35258 Appl. Anal. 101, No. 13, 4512-4532 (2022). MSC: 35P05 35H10 81Q10 81Q15 PDF BibTeX XML Cite \textit{Y. Golovaty}, Appl. Anal. 101, No. 13, 4512--4532 (2022; Zbl 1496.35258) Full Text: DOI arXiv OpenURL
Liu, Liguang; Xiao, Jie Divergence & curl with fractional order. (English. French summary) Zbl 1496.35434 J. Math. Pures Appl. (9) 165, 190-231 (2022). MSC: 35R11 31B35 35F05 47G40 49Q15 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Xiao}, J. Math. Pures Appl. (9) 165, 190--231 (2022; Zbl 1496.35434) Full Text: DOI OpenURL
Song, Jin; Zhou, Zijian; Weng, Weifang; Yan, Zhenya \(\mathcal{PT}\)-symmetric peakon solutions in self-focusing/defocusing power-law nonlinear media: stability, interactions and adiabatic excitations. (English) Zbl 1490.35453 Physica D 435, Article ID 133266, 14 p. (2022). MSC: 35Q55 81Q10 81R40 81V80 78A60 60H40 PDF BibTeX XML Cite \textit{J. Song} et al., Physica D 435, Article ID 133266, 14 p. (2022; Zbl 1490.35453) Full Text: DOI OpenURL
Kanguzhin, B. E.; Tulenov, K. S. Correctness of the definition of the Laplace operator with delta-like potentials. (English) Zbl 1491.35141 Complex Var. Elliptic Equ. 67, No. 4, 898-920 (2022). Reviewer: Thomas Krainer (Altoona) MSC: 35J05 35P05 PDF BibTeX XML Cite \textit{B. E. Kanguzhin} and \textit{K. S. Tulenov}, Complex Var. Elliptic Equ. 67, No. 4, 898--920 (2022; Zbl 1491.35141) Full Text: DOI arXiv OpenURL
Narzillaev, Nurbek Kh. Delta-extremal functions in \(\mathbb{C}^n\). (English) Zbl 07510961 J. Sib. Fed. Univ., Math. Phys. 14, No. 3, 389-398 (2021). MSC: 32Uxx 31Cxx 32Wxx PDF BibTeX XML Cite \textit{N. Kh. Narzillaev}, J. Sib. Fed. Univ., Math. Phys. 14, No. 3, 389--398 (2021; Zbl 07510961) Full Text: DOI MNR OpenURL
Faltings, Gerd Arakelov geometry on degenerating curves. (English) Zbl 1489.14036 J. Reine Angew. Math. 771, 65-84 (2021). Reviewer: Ana María Botero (Regensburg) MSC: 14G40 32G99 31C12 PDF BibTeX XML Cite \textit{G. Faltings}, J. Reine Angew. Math. 771, 65--84 (2021; Zbl 1489.14036) Full Text: DOI OpenURL
Mitrokhin, Sergeĭ Ivanovich On the asymptotics of spectrum of an even-order differential operator with a delta-function potential. (Russian. English summary) Zbl 1499.34441 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 4, 634-662 (2021). MSC: 34L20 47E05 34B09 34L15 PDF BibTeX XML Cite \textit{S. I. Mitrokhin}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 4, 634--662 (2021; Zbl 1499.34441) Full Text: DOI MNR OpenURL
Jarosz, S.; Vaz, J. jun. Bound and scattering states for supersingular potentials. (English) Zbl 1482.81009 Ann. Phys. 434, Article ID 168617, 27 p. (2021). MSC: 81Q05 46F10 35A22 81V45 81U05 PDF BibTeX XML Cite \textit{S. Jarosz} and \textit{J. Vaz jun.}, Ann. Phys. 434, Article ID 168617, 27 p. (2021; Zbl 1482.81009) Full Text: DOI OpenURL
Altybay, Arshyn; Ruzhansky, Michael; Sebih, Mohammed Elamine; Tokmagambetov, Niyaz The heat equation with strongly singular potentials. (English) Zbl 07423478 Appl. Math. Comput. 399, Article ID 126006, 16 p. (2021). MSC: 35K05 35K67 PDF BibTeX XML Cite \textit{A. Altybay} et al., Appl. Math. Comput. 399, Article ID 126006, 16 p. (2021; Zbl 07423478) Full Text: DOI arXiv OpenURL
Qin, Ying-Jie; Lu, Mao-Wang; Huang, Xin-Hong; Xie, Shi-Shi; Sun, Meng-Hao Effect of \(\delta\)-potential on electron-momentum filter based on antiparallel asymmetric double \(\delta\)-magnetic-barrier semiconductor microstructure. (English) Zbl 07411324 Phys. Lett., A 412, Article ID 127571, 4 p. (2021). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{Y.-J. Qin} et al., Phys. Lett., A 412, Article ID 127571, 4 p. (2021; Zbl 07411324) Full Text: DOI OpenURL
Golovaty, Yu. D. On coupling constant thresholds in one dimension. (English) Zbl 1468.34118 Carpathian Math. Publ. 13, No. 1, 22-38 (2021). MSC: 34L10 34L40 81Q10 PDF BibTeX XML Cite \textit{Yu. D. Golovaty}, Carpathian Math. Publ. 13, No. 1, 22--38 (2021; Zbl 1468.34118) Full Text: DOI arXiv OpenURL
Song, Jian; Liu, ShaoXia The barotropic Rossby waves with topography on the Earth’s \(\delta \)-surface. (English) Zbl 07446871 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7-8, 781-788 (2020). MSC: 86-XX 35-XX PDF BibTeX XML Cite \textit{J. Song} and \textit{S. Liu}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 7--8, 781--788 (2020; Zbl 07446871) Full Text: DOI OpenURL
Erman, Fatih; Uncu, Haydar Green’s function formulation of multiple nonlinear Dirac \(\delta \)-function potential in one dimension. (English) Zbl 1478.81035 Phys. Lett., A 384, No. 11, Article ID 126227, 11 p. (2020). MSC: 81U05 35Q55 35J08 46F10 PDF BibTeX XML Cite \textit{F. Erman} and \textit{H. Uncu}, Phys. Lett., A 384, No. 11, Article ID 126227, 11 p. (2020; Zbl 1478.81035) Full Text: DOI arXiv OpenURL
Prorok, Dominik; Prykarpatski, Anatolij Many-particle Schrödinger type finitely factorized quantum Hamiltonian systems and their integrability. (English) Zbl 1503.81063 Kielanowski, Piotr (ed.) et al., Geometric methods in physics XXXVIII. Workshop, Białowieża, Poland, June 30 – July 6, 2019. Cham: Birkhäuser. Trends Math., 251-270 (2020). MSC: 81V70 17B68 17B80 58J70 58J72 81R10 PDF BibTeX XML Cite \textit{D. Prorok} and \textit{A. Prykarpatski}, in: Geometric methods in physics XXXVIII. Workshop, Białowieża, Poland, June 30 -- July 6, 2019. Cham: Birkhäuser. 251--270 (2020; Zbl 1503.81063) Full Text: DOI OpenURL
Rasulova, Mukhayo Application of solution of the quantum kinetic equations for information technology and renewable energy problem. (English) Zbl 07357285 Manchanda, Pammy (ed.) et al., Mathematical modelling, optimization, analytic and numerical solutions. Selected papers based on the presentations at the international conference in conjunction with 14th biennial conference of ISIAM, Guru Nanak Dev University, Amritsar, India, February 2–4, 2018. Singapore: Springer. Ind. Appl. Math., 173-179 (2020). MSC: 65-XX PDF BibTeX XML Cite \textit{M. Rasulova}, in: Mathematical modelling, optimization, analytic and numerical solutions. Selected papers based on the presentations at the international conference in conjunction with 14th biennial conference of ISIAM, Guru Nanak Dev University, Amritsar, India, February 2--4, 2018. Singapore: Springer. 173--179 (2020; Zbl 07357285) Full Text: DOI OpenURL
Khoromskij, Boris N. Range-separated tensor decomposition of the discretized Dirac delta and elliptic operator inverse. (English) Zbl 1453.65035 J. Comput. Phys. 401, Article ID 108998, 20 p. (2020). MSC: 65D12 35Q60 65M60 65M06 78A30 PDF BibTeX XML Cite \textit{B. N. Khoromskij}, J. Comput. Phys. 401, Article ID 108998, 20 p. (2020; Zbl 1453.65035) Full Text: DOI arXiv OpenURL
Cheng, Bin; Chen, Ya-Ming; Xu, Chuan-Fu; Li, Da-Li; Deng, Xiao-Gang Nonlinear Schrödinger equation with a Dirac delta potential: finite difference method. (English) Zbl 1451.35181 Commun. Theor. Phys. 72, No. 2, Article ID 025001, 6 p. (2020). MSC: 35Q55 81Q05 PDF BibTeX XML Cite \textit{B. Cheng} et al., Commun. Theor. Phys. 72, No. 2, Article ID 025001, 6 p. (2020; Zbl 1451.35181) Full Text: DOI OpenURL
Shafarevich, A. I.; Shchegortsova, O. A. Semiclassical asymptotics of the solution to the Cauchy problem for the Schrödinger equation with a delta potential localized on a codimension 1 surface. (English. Russian original) Zbl 1455.35213 Proc. Steklov Inst. Math. 310, 304-313 (2020); translation from Tr. Mat. Inst. Steklova 310, 322-331 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q41 81Q05 81Q10 81Q20 53D12 35B40 PDF BibTeX XML Cite \textit{A. I. Shafarevich} and \textit{O. A. Shchegortsova}, Proc. Steklov Inst. Math. 310, 304--313 (2020; Zbl 1455.35213); translation from Tr. Mat. Inst. Steklova 310, 322--331 (2020) Full Text: DOI OpenURL
Behrndt, Jussi; Exner, Pavel; Holzmann, Markus; Lotoreichik, Vladimir The Landau Hamiltonian with \(\delta \)-potentials supported on curves. (English) Zbl 1465.35132 Rev. Math. Phys. 32, No. 4, Article ID 2050010, 51 p. (2020). MSC: 35J10 35P20 35Q40 81Q10 PDF BibTeX XML Cite \textit{J. Behrndt} et al., Rev. Math. Phys. 32, No. 4, Article ID 2050010, 51 p. (2020; Zbl 1465.35132) Full Text: DOI arXiv OpenURL
Flamencourt, Brice; Pankrashkin, Konstantin Strong coupling asymptotics for \(\delta \)-interactions supported by curves with cusps. (English) Zbl 1453.35059 J. Math. Anal. Appl. 491, No. 1, Article ID 124287, 26 p. (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35J10 34L40 47A75 PDF BibTeX XML Cite \textit{B. Flamencourt} and \textit{K. Pankrashkin}, J. Math. Anal. Appl. 491, No. 1, Article ID 124287, 26 p. (2020; Zbl 1453.35059) Full Text: DOI arXiv OpenURL
Koley, Santanu; Panduranga, K.; Satpathi, Dipak K. Convergence of eigenfunction expansions for membrane coupled gravity waves. (English) Zbl 1451.76025 Maity, Damodar (ed.) et al., Advances in fluid mechanics and solid mechanics. Proceedings of the 63rd congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM), Bangalore, India, December 20–23, 2018. Singapore: Springer. Lect. Notes Mech. Engin., 101-108 (2020). MSC: 76B15 76M45 74F10 74K15 PDF BibTeX XML Cite \textit{S. Koley} et al., in: Advances in fluid mechanics and solid mechanics. Proceedings of the 63rd congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM), Bangalore, India, December 20--23, 2018. Singapore: Springer. 101--108 (2020; Zbl 1451.76025) Full Text: DOI OpenURL
Masaki, Satoshi; Murphy, Jason; Segata, Jun-ichi Stability of small solitary waves for the one-dimensional NLS with an attractive delta potential. (English) Zbl 1447.35299 Anal. PDE 13, No. 4, 1099-1128 (2020). MSC: 35Q55 35B35 35B40 35C08 35P25 PDF BibTeX XML Cite \textit{S. Masaki} et al., Anal. PDE 13, No. 4, 1099--1128 (2020; Zbl 1447.35299) Full Text: DOI arXiv OpenURL
González, Gabriel; Salgado-Blanco, Daniel Shannon information entropy for a one-dimensional ionic crystal. (English) Zbl 1434.81012 Mod. Phys. Lett. A 35, No. 7, Article ID 2050032, 11 p. (2020). MSC: 81P45 81S07 PDF BibTeX XML Cite \textit{G. González} and \textit{D. Salgado-Blanco}, Mod. Phys. Lett. A 35, No. 7, Article ID 2050032, 11 p. (2020; Zbl 1434.81012) Full Text: DOI OpenURL
Pirozhenko, Irina On finite temperature Casimir effect for Dirac lattices. (English) Zbl 1430.81076 Mod. Phys. Lett. A 35, No. 3, Article ID 2040019, 4 p. (2020). MSC: 81T55 82B20 PDF BibTeX XML Cite \textit{I. Pirozhenko}, Mod. Phys. Lett. A 35, No. 3, Article ID 2040019, 4 p. (2020; Zbl 1430.81076) Full Text: DOI arXiv OpenURL
Behrndt, Jussi; Colombo, Fabrizio; Schlosser, Peter Evolution of Aharonov-Berry superoscillations in Dirac \(\delta\)-potential. (English) Zbl 1423.81063 Quantum Stud. Math. Found. 6, No. 3, 279-293 (2019). MSC: 81Q05 34L40 32A15 32A10 47B38 46F10 PDF BibTeX XML Cite \textit{J. Behrndt} et al., Quantum Stud. Math. Found. 6, No. 3, 279--293 (2019; Zbl 1423.81063) Full Text: DOI OpenURL
Adami, Riccardo; Fukuizumi, Reika; Segawa, Etsuo A nonlinear quantum walk induced by a quantum graph with nonlinear delta potentials. (English) Zbl 1417.81143 Quantum Inf. Process. 18, No. 4, Paper No. 119, 14 p. (2019). MSC: 81S25 81Q35 60G50 05C81 47H40 46F10 82C41 PDF BibTeX XML Cite \textit{R. Adami} et al., Quantum Inf. Process. 18, No. 4, Paper No. 119, 14 p. (2019; Zbl 1417.81143) Full Text: DOI OpenURL
Guo, X. F. An improved local boundary integral equation method implemented by the transformed MLS approximation with the delta property. (English) Zbl 1464.65231 Eng. Anal. Bound. Elem. 101, 48-55 (2019). MSC: 65N38 PDF BibTeX XML Cite \textit{X. F. Guo}, Eng. Anal. Bound. Elem. 101, 48--55 (2019; Zbl 1464.65231) Full Text: DOI OpenURL
Gadyl’shin, Timur Rustemovich; Mukminov, Farit Khamzaevich Perturbation of second order nonlinear equation by delta-like potential. (Russian. English summary) Zbl 1463.34240 Ufim. Mat. Zh. 10, No. 2, 30-42 (2018); translation in Ufa Math. J. 10, No. 2, 31-43 (2018). MSC: 34E15 34B15 34E05 PDF BibTeX XML Cite \textit{T. R. Gadyl'shin} and \textit{F. K. Mukminov}, Ufim. Mat. Zh. 10, No. 2, 30--42 (2018; Zbl 1463.34240); translation in Ufa Math. J. 10, No. 2, 31--43 (2018) Full Text: DOI MNR OpenURL
Pava, Jaime Angulo; Ardila, Alex Hernandez Stability of standing waves for logarithmic Schrödinger equation with attractive delta potential. (English) Zbl 1442.35428 Indiana Univ. Math. J. 67, No. 2, 471-494 (2018). MSC: 35Q55 35A01 35B35 PDF BibTeX XML Cite \textit{J. A. Pava} and \textit{A. H. Ardila}, Indiana Univ. Math. J. 67, No. 2, 471--494 (2018; Zbl 1442.35428) Full Text: DOI arXiv OpenURL
Golovaty, Yuriy Schrödinger operators with singular rank-two perturbations and point interactions. (English) Zbl 1412.34237 Integral Equations Oper. Theory 90, No. 5, Paper No. 57, 24 p. (2018). Reviewer: Bilender P. Allahverdiev (Isparta) MSC: 34L40 34B09 81Q10 47A55 PDF BibTeX XML Cite \textit{Y. Golovaty}, Integral Equations Oper. Theory 90, No. 5, Paper No. 57, 24 p. (2018; Zbl 1412.34237) Full Text: DOI arXiv OpenURL
Loran, Farhang; Mostafazadeh, Ali Exact solution of the two-dimensional scattering problem for a class of \(\delta\)-function potentials supported on subsets of a line. (English) Zbl 1397.81424 J. Phys. A, Math. Theor. 51, No. 33, Article ID 335302, 15 p. (2018). MSC: 81U05 81U15 81R20 46F10 81Q80 PDF BibTeX XML Cite \textit{F. Loran} and \textit{A. Mostafazadeh}, J. Phys. A, Math. Theor. 51, No. 33, Article ID 335302, 15 p. (2018; Zbl 1397.81424) Full Text: DOI arXiv OpenURL
Golovaty, Yuriy Two-parametric \({\delta'}\) -interactions: approximation by Schrödinger operators with localized rank-two perturbations. (English) Zbl 1395.81109 J. Phys. A, Math. Theor. 51, No. 25, Article ID 255202, 14 p. (2018). MSC: 81Q05 81Q10 35J10 46F10 81Q80 81Q15 PDF BibTeX XML Cite \textit{Y. Golovaty}, J. Phys. A, Math. Theor. 51, No. 25, Article ID 255202, 14 p. (2018; Zbl 1395.81109) Full Text: DOI arXiv OpenURL
Erman, Fatih; Gadella, Manuel; Uncu, Haydar On scattering from the one-dimensional multiple Dirac delta potentials. (English) Zbl 1392.81213 Eur. J. Phys. 39, No. 3, Article ID 035403, 19 p. (2018). MSC: 81U05 46F10 97M50 PDF BibTeX XML Cite \textit{F. Erman} et al., Eur. J. Phys. 39, No. 3, Article ID 035403, 19 p. (2018; Zbl 1392.81213) Full Text: DOI Link OpenURL
Fernández, Francisco M. Comment on: “Split kinetic energy method for quantum systems with competing potentials”. (English) Zbl 1391.81075 Ann. Phys. 393, 71-75 (2018). MSC: 81Q05 81Q10 PDF BibTeX XML Cite \textit{F. M. Fernández}, Ann. Phys. 393, 71--75 (2018; Zbl 1391.81075) Full Text: DOI OpenURL
Kulaev, Ruslan Chermenovich; Shabat, Alekseĭ Borisovich Some properties of Jost functions for Schrödinger equation with distribution potential. (Russian. English summary) Zbl 1463.34358 Ufim. Mat. Zh. 9, No. 4, 60-73 (2017); translation in Ufa Math. J. 9, No. 4, 59-71 (2017). MSC: 34L25 34L40 PDF BibTeX XML Cite \textit{R. C. Kulaev} and \textit{A. B. Shabat}, Ufim. Mat. Zh. 9, No. 4, 60--73 (2017; Zbl 1463.34358); translation in Ufa Math. J. 9, No. 4, 59--71 (2017) Full Text: DOI MNR OpenURL
Kondej, Sylwia Straight quantum layer with impurities inducing resonances. (English) Zbl 1371.81114 J. Phys. A, Math. Theor. 50, No. 31, Article ID 315203, 18 p. (2017). MSC: 81Q10 35P05 35B34 46F10 35J10 81Q37 82D37 PDF BibTeX XML Cite \textit{S. Kondej}, J. Phys. A, Math. Theor. 50, No. 31, Article ID 315203, 18 p. (2017; Zbl 1371.81114) Full Text: DOI arXiv OpenURL
Aliev, Z. S.; Geidarov, Arif G. Spectral properties of the Sturm-Liouville operator with \(\delta\)-potential and with spectral parameter in the boundary condition. (English. Russian original) Zbl 1379.34079 Math. Notes 101, No. 5, 913-918 (2017); translation from Mat. Zametki 101, No. 5, 792-797 (2017). Reviewer: Vassilis G. Papanicolaou (Athena) MSC: 34L05 34B24 34L10 PDF BibTeX XML Cite \textit{Z. S. Aliev} and \textit{A. G. Geidarov}, Math. Notes 101, No. 5, 913--918 (2017; Zbl 1379.34079); translation from Mat. Zametki 101, No. 5, 792--797 (2017) Full Text: DOI OpenURL
Ferkous, N.; Boudjedaa, T. Bound states energies of a harmonic oscillator perturbed by point interactions. (English) Zbl 1360.81141 Commun. Theor. Phys. 67, No. 3, 241-249 (2017). MSC: 81Q05 PDF BibTeX XML Cite \textit{N. Ferkous} and \textit{T. Boudjedaa}, Commun. Theor. Phys. 67, No. 3, 241--249 (2017; Zbl 1360.81141) Full Text: DOI OpenURL
Olendski, O. Evolution of electric-field-induced quasibound states and resonances in one-dimensional open quantum systems. (English) Zbl 1358.81153 Ann. Phys., Berlin 529, No. 3, Article ID 1600144, 27 p. (2017). MSC: 81U05 81S22 82D77 82D80 PDF BibTeX XML Cite \textit{O. Olendski}, Ann. Phys., Berlin 529, No. 3, Article ID 1600144, 27 p. (2017; Zbl 1358.81153) Full Text: DOI arXiv OpenURL
Ikeda, Masahiro; Inui, Takahisa Global dynamics below the standing waves for the focusing semilinear Schrödinger equation with a repulsive Dirac delta potential. (English) Zbl 1365.35156 Anal. PDE 10, No. 2, 481-512 (2017). Reviewer: David Kapanadze (Tbilisi) MSC: 35Q55 35P25 47J35 PDF BibTeX XML Cite \textit{M. Ikeda} and \textit{T. Inui}, Anal. PDE 10, No. 2, 481--512 (2017; Zbl 1365.35156) Full Text: DOI arXiv OpenURL
Ohta, Masahito; Yamaguchi, Takahiro Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential. (English) Zbl 1361.35167 RIMS Kôkyûroku Bessatsu B56, 79-92 (2016). MSC: 35Q55 35B35 35B44 35Q41 PDF BibTeX XML Cite \textit{M. Ohta} and \textit{T. Yamaguchi}, RIMS Kôkyûroku Bessatsu B56, 79--92 (2016; Zbl 1361.35167) Full Text: arXiv OpenURL
Behrndt, J.; Langer, M.; Lotoreichik, V. Boundary triples for Schrödinger operators with singular interactions on hypersurfaces. (English) Zbl 1353.47043 Nanosyst., Phys. Chem. Math. 7, No. 2, 290-302 (2016). MSC: 47B25 35J10 PDF BibTeX XML Cite \textit{J. Behrndt} et al., Nanosyst., Phys. Chem. Math. 7, No. 2, 290--302 (2016; Zbl 1353.47043) Full Text: DOI OpenURL
Ma, Zhong-Qi New contributions to physics by prof. C. N. Yang: 2009–2011. (English) Zbl 1345.81037 Brink, L. (ed.) et al., 60 years of Yang-Mills gauge field theories. C. N . Yang’s contributions to physics. Proceedings of the conference, Singapore, May 25–28, 2015. Hackensack, NJ: World Scientific (ISBN 978-981-4725-54-5/hbk; 978-981-4725-55-2/pbk; 978-981-4725-57-6/ebook). 499-504 (2016). MSC: 81Q05 81V70 81V45 46F10 01A70 81-03 01A60 PDF BibTeX XML Cite \textit{Z.-Q. Ma}, in: 60 years of Yang-Mills gauge field theories. C. N . Yang's contributions to physics. Proceedings of the conference, Singapore, May 25--28, 2015. Hackensack, NJ: World Scientific. 499--504 (2016; Zbl 1345.81037) Full Text: DOI OpenURL
Galkowski, Jeffrey Resonances for thin barriers on the circle. (English) Zbl 1349.35262 J. Phys. A, Math. Theor. 49, No. 12, Article ID 125205, 22 p. (2016). Reviewer: Michael Perelmuter (Kyïv) MSC: 35P25 35J10 81U05 PDF BibTeX XML Cite \textit{J. Galkowski}, J. Phys. A, Math. Theor. 49, No. 12, Article ID 125205, 22 p. (2016; Zbl 1349.35262) Full Text: DOI arXiv OpenURL
Lee, Minjae Eigenvalues of Šeba billiards with localization of low-energy eigenfunctions. (English) Zbl 1342.81124 J. Phys. A, Math. Theor. 49, No. 8, Article ID 085204, 18 p. (2016). MSC: 81Q10 37D50 46F10 PDF BibTeX XML Cite \textit{M. Lee}, J. Phys. A, Math. Theor. 49, No. 8, Article ID 085204, 18 p. (2016; Zbl 1342.81124) Full Text: DOI arXiv OpenURL
Gadella, M.; Guilarte, J. Mateos; Muñoz-Castañeda, J. M.; Nieto, L. M. Two-point one-dimensional \(\delta\)-\(\delta^{\prime}\) interactions: non-abelian addition law and decoupling limit. (English) Zbl 1342.81107 J. Phys. A, Math. Theor. 49, No. 1, Article ID 015204, 22 p. (2016). MSC: 81Q05 81R05 46F10 81U05 PDF BibTeX XML Cite \textit{M. Gadella} et al., J. Phys. A, Math. Theor. 49, No. 1, Article ID 015204, 22 p. (2016; Zbl 1342.81107) Full Text: DOI arXiv OpenURL
Mukminov, F. Kh.; Gadyl’shin, T. R. A boundary value problem for a second-order nonlinear equation with delta-like potential. (English. Russian original) Zbl 1360.34046 Proc. Steklov Inst. Math. 292, Suppl. 1, S216-S230 (2016); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 21, No. 1, 177-190 (2015). Reviewer: Anna Capietto (Torino) MSC: 34B15 34E10 34E05 PDF BibTeX XML Cite \textit{F. Kh. Mukminov} and \textit{T. R. Gadyl'shin}, Proc. Steklov Inst. Math. 292, S216--S230 (2016; Zbl 1360.34046); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 21, No. 1, 177--190 (2015) Full Text: DOI OpenURL
Lee, Minjae Dirac cones for point scatterers on a honeycomb lattice. (English) Zbl 1342.35283 SIAM J. Math. Anal. 48, No. 2, 1459-1488 (2016). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q40 81Q10 82B20 PDF BibTeX XML Cite \textit{M. Lee}, SIAM J. Math. Anal. 48, No. 2, 1459--1488 (2016; Zbl 1342.35283) Full Text: DOI arXiv OpenURL
Ma, Zhong-Qi New contributions to physics by Prof. C. N. Yang: 2009–2011. (English) Zbl 1331.81007 Mod. Phys. Lett. A 31, No. 1, Article ID 1630001, 6 p. (2016). MSC: 81-02 81T13 81-03 01A60 PDF BibTeX XML Cite \textit{Z.-Q. Ma}, Mod. Phys. Lett. A 31, No. 1, Article ID 1630001, 6 p. (2016; Zbl 1331.81007) Full Text: DOI OpenURL
Genoud, François; Malomed, Boris A.; Weishäupl, Rada M. Stable NLS solitons in a cubic-quintic medium with a delta-function potential. (English) Zbl 1398.35213 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 133, 28-50 (2016). MSC: 35Q55 35B32 35C08 35J61 37C75 74J30 78A60 35J60 PDF BibTeX XML Cite \textit{F. Genoud} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 133, 28--50 (2016; Zbl 1398.35213) Full Text: DOI arXiv OpenURL
Banica, Valeria; Visciglia, Nicola Scattering for NLS with a delta potential. (English) Zbl 1342.35200 J. Differ. Equations 260, No. 5, 4410-4439 (2016). Reviewer: Vincent Lescarret (Gif-sur-Yvette) MSC: 35P25 35Q55 PDF BibTeX XML Cite \textit{V. Banica} and \textit{N. Visciglia}, J. Differ. Equations 260, No. 5, 4410--4439 (2016; Zbl 1342.35200) Full Text: DOI arXiv OpenURL
Bai, Jiejing; Wang, Li EJIIM for the stationary Schrödinger equations with delta potential wells. (English) Zbl 1410.65275 Appl. Math. Comput. 254, 113-124 (2015). MSC: 65L15 35J10 PDF BibTeX XML Cite \textit{J. Bai} and \textit{L. Wang}, Appl. Math. Comput. 254, 113--124 (2015; Zbl 1410.65275) Full Text: DOI OpenURL
Tare, Jeffrey D.; Esguerra, Jose Perico H. Space-fractional Schrödinger equation for a quadrupolar triple Dirac-\(\delta\) potential: central Dirac-\(\delta\) well and barrier cases. Reprint of the International Journal of Modern Physics: Conference Series 36 (2015). (English) Zbl 1342.35286 Bernido, Christopher C. (ed.) et al., Analysis of fractional stochastic processes: advances and applications. Proceedings of the 7th Jagna international workshop, Jagna, Bohol, Philippines, January 6–11, 2014. Hackensack, NJ: World Scientific (ISBN 978-981-4618-34-2/hbk). Article ID 1560014, 5 p. (2015). Reviewer: Qin Meng Zhao (Beijing) MSC: 35Q40 35R11 35Q55 PDF BibTeX XML Cite \textit{J. D. Tare} and \textit{J. P. H. Esguerra}, in: Analysis of fractional stochastic processes: advances and applications. Proceedings of the 7th Jagna international workshop, Jagna, Bohol, Philippines, January 6--11, 2014. Hackensack, NJ: World Scientific. Article ID 1560014, 5 p. (2015; Zbl 1342.35286) Full Text: DOI OpenURL
Gadyl’shin, T. R. Boundary-value problems for the Schrödinger equation with rapidly oscillating and delta-liked potentials. (English. Russian original) Zbl 1338.34058 Math. Notes 98, No. 6, 900-908 (2015); translation from Mat. Zametki 98, No. 6, 842-852 (2015). MSC: 34B15 34L40 34E15 34E05 PDF BibTeX XML Cite \textit{T. R. Gadyl'shin}, Math. Notes 98, No. 6, 900--908 (2015; Zbl 1338.34058); translation from Mat. Zametki 98, No. 6, 842--852 (2015) Full Text: DOI OpenURL
Kapshai, V. N.; Fialka, S. I. Partial two-particle relativistic scattering problems and superpositions of \(\delta\)-shell potentials. (Russian. English summary) Zbl 1333.81417 Izv. Gomel. Gos. Univ. Im. F. Skoriny 2015, No. 3(90), 140-145 (2015). MSC: 81U05 35B34 46E10 81T80 PDF BibTeX XML Cite \textit{V. N. Kapshai} and \textit{S. I. Fialka}, Izv. Gomel. Gos. Univ. Im. F. Skoriny 2015, No. 3(90), 140--145 (2015; Zbl 1333.81417) OpenURL
Kapshai, V. N.; Grishechkin, Yu. A. Relativistic scattering \(s\)-states problem for superposition of two potentials “\(\delta\)-sphere” type. (Russian. English summary) Zbl 1330.81083 Probl. Fiz. Mat. Tekh. 2015, No. 2(23), 7-12 (2015). MSC: 81Q05 35Q40 35P25 PDF BibTeX XML Cite \textit{V. N. Kapshai} and \textit{Yu. A. Grishechkin}, Probl. Fiz. Mat. Tekh. 2015, No. 2(23), 7--12 (2015; Zbl 1330.81083) Full Text: MNR OpenURL
Behrndt, Jussi; Grubb, Gerd; Langer, Matthias; Lotoreichik, Vladimir Spectral asymptotics for resolvent differences of elliptic operators with \(\delta\) and \(\delta^{'}\)-interactions on hypersurfaces. (English) Zbl 1353.47090 J. Spectr. Theory 5, No. 4, 697-729 (2015). Reviewer: Thomas Krainer (Altoona) MSC: 47F05 35J25 35P20 47G30 81Q10 81Q15 PDF BibTeX XML Cite \textit{J. Behrndt} et al., J. Spectr. Theory 5, No. 4, 697--729 (2015; Zbl 1353.47090) Full Text: DOI arXiv OpenURL
Abt, Nikolas; Cartarius, Holger; Wunner, Günter Supersymmetric model of a Bose-Einstein condensate in a \(\mathcal{PT}\)-symmetric double-delta trap. (English) Zbl 1329.81196 Int. J. Theor. Phys. 54, No. 11, 4054-4067 (2015). MSC: 81Q60 81Q05 81R05 81V70 PDF BibTeX XML Cite \textit{N. Abt} et al., Int. J. Theor. Phys. 54, No. 11, 4054--4067 (2015; Zbl 1329.81196) Full Text: DOI arXiv OpenURL
Derevyanko, Stanislav; Waltner, Daniel Non-adiabatic quantum pumping by a randomly moving quantum dot. (English) Zbl 1325.81108 J. Phys. A, Math. Theor. 48, No. 30, Article ID 305302, 25 p. (2015). MSC: 81S22 81Q37 81V80 78A60 60G51 81Q70 PDF BibTeX XML Cite \textit{S. Derevyanko} and \textit{D. Waltner}, J. Phys. A, Math. Theor. 48, No. 30, Article ID 305302, 25 p. (2015; Zbl 1325.81108) Full Text: DOI arXiv OpenURL
Refaei, A.; Kheirandish, F. Quantum propagator and characteristic equation in the presence of a chain of \(\delta\)-potentials. (English) Zbl 1322.81035 Int. J. Mod. Phys. B 29, No. 15, Article ID 1550099, 13 p. (2015). MSC: 81Q05 46F10 81Q10 47A10 35K57 PDF BibTeX XML Cite \textit{A. Refaei} and \textit{F. Kheirandish}, Int. J. Mod. Phys. B 29, No. 15, Article ID 1550099, 13 p. (2015; Zbl 1322.81035) Full Text: DOI arXiv OpenURL
Behrndt, Jussi; Exner, Pavel; Lotoreichik, Vladimir Schrödinger operators with \(\delta\)- and \(\delta'\)-interactions on Lipschitz surfaces and chromatic numbers of associated partitions. (English) Zbl 1326.47050 Rev. Math. Phys. 26, No. 8, Article ID 1450015, 43 p. (2014). Reviewer: Miyeon Kwon (Platteville) MSC: 47F05 35P05 47A55 47A63 47A75 81Q10 PDF BibTeX XML Cite \textit{J. Behrndt} et al., Rev. Math. Phys. 26, No. 8, Article ID 1450015, 43 p. (2014; Zbl 1326.47050) Full Text: DOI arXiv OpenURL
Ahmed, Zafar; Yadav, Indresh Position-momentum uncertainty products. (English) Zbl 1298.81125 Eur. J. Phys. 35, No. 4, Article ID 045015, 6 p. (2014). MSC: 81S05 81Q05 81Q10 81U15 42A38 PDF BibTeX XML Cite \textit{Z. Ahmed} and \textit{I. Yadav}, Eur. J. Phys. 35, No. 4, Article ID 045015, 6 p. (2014; Zbl 1298.81125) Full Text: DOI arXiv OpenURL
Brewster, Kevin; Mitrea, Dorina; Mitrea, Irina; Mitrea, Marius Extending Sobolev functions with partially vanishing traces from locally \(({\epsilon},{\delta})\)-domains and applications to mixed boundary problems. (English) Zbl 1312.46042 J. Funct. Anal. 266, No. 7, 4314-4421 (2014). MSC: 46E35 PDF BibTeX XML Cite \textit{K. Brewster} et al., J. Funct. Anal. 266, No. 7, 4314--4421 (2014; Zbl 1312.46042) Full Text: DOI arXiv OpenURL
Lotoreichik, Vladimir Lower bounds on the norms of extension operators for Lipschitz domains. (English) Zbl 1310.47014 Oper. Matrices 8, No. 2, 573-592 (2014). Reviewer: Dian K. Palagachev (Bari) MSC: 47A30 46E35 35P15 47B38 PDF BibTeX XML Cite \textit{V. Lotoreichik}, Oper. Matrices 8, No. 2, 573--592 (2014; Zbl 1310.47014) Full Text: DOI arXiv Link OpenURL
Zolotaryuk, A. V.; Zolotaryuk, Y. Intrinsic resonant tunneling properties of the one-dimensional Schrödinger operator with a delta derivative potential. (English) Zbl 1284.81127 Int. J. Mod. Phys. B 28, No. 1, Article ID 1350203, 28 p. (2014). MSC: 81Q05 34L40 PDF BibTeX XML Cite \textit{A. V. Zolotaryuk} and \textit{Y. Zolotaryuk}, Int. J. Mod. Phys. B 28, No. 1, Article ID 1350203, 28 p. (2014; Zbl 1284.81127) Full Text: DOI OpenURL
Makarov, V. L.; Rossokhata, N. O.; Dragunov, D. V. An exponentially convergent functional-discrete method for solving Sturm-Liouville problems with a potential including the Dirac \(\delta\)-function. (English) Zbl 1302.65172 J. Comput. Appl. Math. 250, 39-57 (2013). MSC: 65L15 65Y15 34L16 34L40 PDF BibTeX XML Cite \textit{V. L. Makarov} et al., J. Comput. Appl. Math. 250, 39--57 (2013; Zbl 1302.65172) Full Text: DOI arXiv OpenURL
Al-Hashimi, M. H.; Salman, M.; Shalaby, A.; Wiese, U.-J. Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians. (English) Zbl 1374.81051 Ann. Phys. 337, 1-24 (2013). MSC: 81Q10 PDF BibTeX XML Cite \textit{M. H. Al-Hashimi} et al., Ann. Phys. 337, 1--24 (2013; Zbl 1374.81051) Full Text: DOI arXiv Link OpenURL
Schulze-Halberg, Axel; García-Ravelo, Jesús; Pacheco-García, Christian; Juan Peña Gil, José A position-dependent mass model for the Thomas-Fermi potential: exact solvability and relation to \(\delta\)-doped semiconductors. (English) Zbl 1284.82105 Ann. Phys. 333, 323-334 (2013). MSC: 82D37 81V70 PDF BibTeX XML Cite \textit{A. Schulze-Halberg} et al., Ann. Phys. 333, 323--334 (2013; Zbl 1284.82105) Full Text: DOI OpenURL
Behrndt, Jussi; Langer, Matthias; Lotoreichik, Vladimir Spectral estimates for resolvent differences of self-adjoint elliptic operators. (English) Zbl 1311.47059 Integral Equations Oper. Theory 77, No. 1, 1-37 (2013). Reviewer: Massimo Lanza de Cristoforis (Padova) MSC: 47F05 35P05 35P20 47L20 81Q10 81Q15 PDF BibTeX XML Cite \textit{J. Behrndt} et al., Integral Equations Oper. Theory 77, No. 1, 1--37 (2013; Zbl 1311.47059) Full Text: DOI arXiv Link OpenURL
Niikuni, Hiroaki On the degenerate spectral gaps of the 1D Schrödinger operators with 4-term periodic delta potentials. (English) Zbl 1292.34084 Far East J. Math. Sci. (FJMS) 78, No. 1, 131-155 (2013). Reviewer: Satyanad Kichenassamy (Reims) MSC: 34L40 34L15 PDF BibTeX XML Cite \textit{H. Niikuni}, Far East J. Math. Sci. (FJMS) 78, No. 1, 131--155 (2013; Zbl 1292.34084) Full Text: Link OpenURL
Kachkovskiĭ, I. Stein-Tomas theorem for a torus and the periodic Schrödinger operator with singular potential. (English) Zbl 1284.42021 St. Petersbg. Math. J. 24, No. 6, 939-948 (2013); translation from Algebra Anal. 24, No. 6, 124-138 (2012). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 42B10 35J10 42B37 PDF BibTeX XML Cite \textit{I. Kachkovskiĭ}, St. Petersbg. Math. J. 24, No. 6, 939--948 (2013; Zbl 1284.42021); translation from Algebra Anal. 24, No. 6, 124--138 (2012) Full Text: DOI OpenURL
Sassoli de Bianchi, Massimiliano The \(\delta \)-quantum machine, the \(k\)-model, and the non-ordinary spatiality of quantum entities. (English) Zbl 1272.81012 Found. Sci. 18, No. 1, 11-41 (2013). MSC: 81P05 81U05 81P15 PDF BibTeX XML Cite \textit{M. Sassoli de Bianchi}, Found. Sci. 18, No. 1, 11--41 (2013; Zbl 1272.81012) Full Text: DOI arXiv OpenURL
Golovaty, Yuriy 1D Schrödinger operators with short range interactions: two-scale regularization of distributional potentials. (English) Zbl 1270.34198 Integral Equations Oper. Theory 75, No. 3, 341-362 (2013). Reviewer: Bilender P. Allahverdiev (Isparta) MSC: 34L40 34B09 81Q10 PDF BibTeX XML Cite \textit{Y. Golovaty}, Integral Equations Oper. Theory 75, No. 3, 341--362 (2013; Zbl 1270.34198) Full Text: DOI arXiv OpenURL
Behrndt, Jussi; Langer, Matthias; Lotoreichik, Vladimir Schrödinger operators with \(\delta\) and \(\delta^{\prime}\)-potentials supported on hypersurfaces. (English) Zbl 1275.81027 Ann. Henri Poincaré 14, No. 2, 385-423 (2013). Reviewer: Josipa Pina Milisic (Zagreb) MSC: 81Q05 81Q15 81Q10 81U20 47L20 47F05 35P20 35P05 PDF BibTeX XML Cite \textit{J. Behrndt} et al., Ann. Henri Poincaré 14, No. 2, 385--423 (2013; Zbl 1275.81027) Full Text: DOI arXiv Link OpenURL
Kapshai, V. N.; Hryshechkin, Y. A. Relativistic equations with a superposition of nonlinear delta-function potentials. (English) Zbl 1300.81073 Nonlinear Phenom. Complex Syst., Minsk 15, No. 1, 58-69 (2012). MSC: 81U05 81S05 PDF BibTeX XML Cite \textit{V. N. Kapshai} and \textit{Y. A. Hryshechkin}, Nonlinear Phenom. Complex Syst., Minsk 15, No. 1, 58--69 (2012; Zbl 1300.81073) Full Text: Link OpenURL
Kapshai, V. N.; Hryshechkin, Y. A. The bound states problem for generalized nonlinear delta-potentials. (English) Zbl 1294.81258 Nonlinear Phenom. Complex Syst., Minsk 15, No. 2, 138-154 (2012). MSC: 81U05 81T70 81Q40 PDF BibTeX XML Cite \textit{V. N. Kapshai} and \textit{Y. A. Hryshechkin}, Nonlinear Phenom. Complex Syst., Minsk 15, No. 2, 138--154 (2012; Zbl 1294.81258) Full Text: Link OpenURL
Golovaty, Yuriy Schrödinger operators with \((\alpha \delta'+\beta \delta)\)-like potentials: norm resolvent convergence and solvable models. (English) Zbl 1265.34320 Methods Funct. Anal. Topol. 18, No. 3, 243-255 (2012). Reviewer: Anatoly N. Kochubei (Kyïv) MSC: 34L40 81Q10 PDF BibTeX XML Cite \textit{Y. Golovaty}, Methods Funct. Anal. Topol. 18, No. 3, 243--255 (2012; Zbl 1265.34320) Full Text: arXiv OpenURL
Cordourier-Maruri, Guillermo; de Coss, Romeo; Gupta, Virendra Transmission properties of the one-dimensional array of delta potentials. (English) Zbl 1259.82148 Mod. Phys. Lett. B 25, No. 16, 1349-1358 (2011). MSC: 82D77 81U10 PDF BibTeX XML Cite \textit{G. Cordourier-Maruri} et al., Mod. Phys. Lett. B 25, No. 16, 1349--1358 (2011; Zbl 1259.82148) Full Text: DOI arXiv OpenURL
Antonevich, A. On certain high-order partial differential expressions with \(\delta \)-potential. (English) Zbl 1238.46028 Integral Transforms Spec. Funct. 22, No. 4-5, 255-261 (2011). MSC: 46F10 35P99 81Q99 44A05 PDF BibTeX XML Cite \textit{A. Antonevich}, Integral Transforms Spec. Funct. 22, No. 4--5, 255--261 (2011; Zbl 1238.46028) Full Text: DOI OpenURL
Hnizdo, V. Generalized second-order partial derivatives of \(1/r\). (English) Zbl 1218.31006 Eur. J. Phys. 32, No. 2, 287-297 (2011). MSC: 31A99 PDF BibTeX XML Cite \textit{V. Hnizdo}, Eur. J. Phys. 32, No. 2, 287--297 (2011; Zbl 1218.31006) Full Text: DOI arXiv OpenURL
Filatova, T. A.; Shafarevich, A. I. Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere. (English. Russian original) Zbl 1298.81069 Theor. Math. Phys. 164, No. 2, 1064-1080 (2010); translation from Teor. Mat. Fiz. 164, No. 2, 279-298 (2010). MSC: 81Q05 81Q20 PDF BibTeX XML Cite \textit{T. A. Filatova} and \textit{A. I. Shafarevich}, Theor. Math. Phys. 164, No. 2, 1064--1080 (2010; Zbl 1298.81069); translation from Teor. Mat. Fiz. 164, No. 2, 279--298 (2010) Full Text: DOI OpenURL
Antonevich, A. On differential expressions with \(\delta\)-potential: exceptional case \(d=2l\). (English) Zbl 1261.46033 Kielanowski, Piotr (ed.) et al., XXIX workshop on geometric methods in physics, Białowieża, Poland, June 27 – July 3, 2010. Selected papers based on the presentations at the workshop. Melville, NY: American Institute of Physics (AIP) (ISBN 978-0-7354-0861-6/hbk). AIP Conference Proceedings 1307, 1-6 (2010). MSC: 46F99 35P99 81Q05 PDF BibTeX XML Cite \textit{A. Antonevich}, AIP Conf. Proc. 1307, 1--6 (2010; Zbl 1261.46033) OpenURL
Accardi, Luigi; Barhoumi, Abdessatar; Riahi, Anis White noise Lévy-Meixner processes through a transfer principal from one-mode to one-mode type interacting Fock spaces. (English) Zbl 1225.60121 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 3, 435-460 (2010). Reviewer: Enzo Orsingher (Roma) MSC: 60H40 60J65 60J45 60G51 PDF BibTeX XML Cite \textit{L. Accardi} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13, No. 3, 435--460 (2010; Zbl 1225.60121) Full Text: DOI OpenURL
Cohen-Tannoudji, Claude; Diu, Bernard; Laloë, Frank Quantum mechanics. Vol. 2. Translated from the French original by Joachim v. Streubel and Jochen Balla. 4th revised ed. (Quantenmechanik. Band 2. Übersetzt aus dem Französischen von Joachim v. Streubel und Jochen Balla.) (German) Zbl 1206.81001 Berlin: de Gruyter (ISBN 978-3-11-022460-3/hbk). xiv, 657 p. (2010). Reviewer: Claudia-Veronika Meister (Darmstadt) MSC: 81-01 81Q05 81Q15 81V45 81V70 81R05 81U05 81S05 70H40 PDF BibTeX XML Cite \textit{C. Cohen-Tannoudji} et al., Quantenmechanik. Band 2. Übersetzt aus dem Französischen von Joachim v. Streubel und Jochen Balla. 4th revised ed. Berlin: de Gruyter (2010; Zbl 1206.81001) OpenURL
Niikuni, Hiroaki Coexistence problem for the one-dimensional Schrödinger operators with the double or triple periodic \(\delta ^{(1)}\)-interactions. (English) Zbl 1194.34158 J. Math. Anal. Appl. 366, No. 1, 283-296 (2010). Reviewer: Satyanad Kichenassamy (Reims) MSC: 34L40 34L05 PDF BibTeX XML Cite \textit{H. Niikuni}, J. Math. Anal. Appl. 366, No. 1, 283--296 (2010; Zbl 1194.34158) Full Text: DOI OpenURL
Man’ko, Stepan On Schrödinger and Sturm-Liouville operators with \(\delta'\)-potentials. (Ukrainian. English summary) Zbl 1224.81013 Visn. L’viv. Univ., Ser. Mekh.-Mat. 71, 142-155 (2009). MSC: 81Q80 81U15 81Q05 34B24 34L40 PDF BibTeX XML Cite \textit{S. Man'ko}, Visn. L'viv. Univ., Ser. Mekh.-Mat. 71, 142--155 (2009; Zbl 1224.81013) OpenURL
Kaminaga, Masahiro; Ohta, Masahito Stability of standing waves for nonlinear Schrödinger equation with attractive delta potential and repulsive nonlinearity. (English) Zbl 1191.35254 Saitama Math. J. 26, 39-48 (2009). MSC: 35Q55 35B35 37K40 PDF BibTeX XML Cite \textit{M. Kaminaga} and \textit{M. Ohta}, Saitama Math. J. 26, 39--48 (2009; Zbl 1191.35254) OpenURL
Kapshai, V. N.; Grishechkin, Yu. A. Relativistic equations with some point potentials. (English. Russian original) Zbl 1180.81131 Russ. Phys. J. 52, No. 6, 554-563 (2009); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 2009, No. 6, 9-15 (2009). MSC: 81U05 81Q05 70F05 34B27 PDF BibTeX XML Cite \textit{V. N. Kapshai} and \textit{Yu. A. Grishechkin}, Russ. Phys. J. 52, No. 6, 554--563 (2009; Zbl 1180.81131); translation from Izv. Vyssh. Uchebn. Zaved., Fiz. 2009, No. 6, 9--15 (2009) Full Text: DOI OpenURL
Caragiu, Mellita; Stoffel, Joshua Delta function potential randomly placed within an infinite square well: Analytical derivation of the energy spectrum. (English) Zbl 1178.81096 Far East J. Math. Sci. (FJMS) 35, No. 2, 117-130 (2009). MSC: 81Q80 81Q05 81U15 PDF BibTeX XML Cite \textit{M. Caragiu} and \textit{J. Stoffel}, Far East J. Math. Sci. (FJMS) 35, No. 2, 117--130 (2009; Zbl 1178.81096) Full Text: Link OpenURL
Kapshai, V. N.; Hryshechkin, Y. A. The relativistic equations with a nonlinear delta-potential. (English) Zbl 1175.81097 Nonlinear Phenom. Complex Syst., Minsk 12, No. 1, 75-80 (2009). MSC: 81Q05 PDF BibTeX XML Cite \textit{V. N. Kapshai} and \textit{Y. A. Hryshechkin}, Nonlinear Phenom. Complex Syst., Minsk 12, No. 1, 75--80 (2009; Zbl 1175.81097) Full Text: Link OpenURL
Datchev, Kiril; Holmer, Justin Fast soliton scattering by attractive delta impurities. (English) Zbl 1194.35403 Commun. Partial Differ. Equations 34, No. 9, 1074-1113 (2009). Reviewer: Alina Stancu (Lowell) MSC: 35Q55 35Q51 81U99 PDF BibTeX XML Cite \textit{K. Datchev} and \textit{J. Holmer}, Commun. Partial Differ. Equations 34, No. 9, 1074--1113 (2009; Zbl 1194.35403) Full Text: DOI arXiv OpenURL
Gakh, G. I.; Tomasi-Gustafsson, E.; Gakh, A. G. Relativistically invariant analysis of \(\Delta\)-isobar production in deuteron electrodisintegration: \(e^- + d \rightarrow e^-+ \Delta+N\): general analysis of polarization effects. (English) Zbl 1171.81023 Ann. Phys. 324, No. 9, 1897-1930 (2009). MSC: 81V35 81V10 81U99 81U05 PDF BibTeX XML Cite \textit{G. I. Gakh} et al., Ann. Phys. 324, No. 9, 1897--1930 (2009; Zbl 1171.81023) Full Text: DOI arXiv OpenURL
Cavero-Peláez, Inés; Milton, Kimball A.; Parashar, Prachi; Shajesh, K. V. Leading-and next-to-leading-order lateral Casimir force on corrugated surfaces. (English) Zbl 1170.81406 Int. J. Mod. Phys. A 24, No. 8-9, 1757-1763 (2009). MSC: 81T05 81T99 81T20 81T15 PDF BibTeX XML Cite \textit{I. Cavero-Peláez} et al., Int. J. Mod. Phys. A 24, No. 8--9, 1757--1763 (2009; Zbl 1170.81406) Full Text: DOI arXiv OpenURL
Antonevich, A. B.; Romanchuk, T. A. Equations with \(\delta \)-shaped coefficients: The finite-dimensional perturbations approach. (English) Zbl 1177.46026 Integral Transforms Spec. Funct. 20, No. 3-4, 239-246 (2009). Reviewer: Thomas Sonar (Braunschweig) MSC: 46F10 35J10 81Q05 PDF BibTeX XML Cite \textit{A. B. Antonevich} and \textit{T. A. Romanchuk}, Integral Transforms Spec. Funct. 20, No. 3--4, 239--246 (2009; Zbl 1177.46026) Full Text: DOI OpenURL
Correa, Francisco; Nieto, Luis-Miguel; Plyushchay, Mikhail S. Hidden nonlinear \(\mathrm{su}(2| 2)\) superunitary symmetry of \(N=2\) superextended 1D Dirac delta potential problem. (English) Zbl 1246.81060 Phys. Lett., B 659, No. 3, 746-753 (2008). MSC: 81Q60 17B81 PDF BibTeX XML Cite \textit{F. Correa} et al., Phys. Lett., B 659, No. 3, 746--753 (2008; Zbl 1246.81060) Full Text: DOI arXiv OpenURL