×

zbMATH — the first resource for mathematics

Inference robust to outliers with \(\ell_1\)-norm penalization. (English) Zbl 1455.62065
Summary: This paper considers inference in a linear regression model with outliers in which the number of outliers can grow with sample size while their proportion goes to 0. We propose a square-root lasso \(\ell_1\)-norm penalized estimator. We derive rates of convergence and establish asymptotic normality. Our estimator has the same asymptotic variance as the OLS estimator in the standard linear model. This enables us to build tests and confidence sets in the usual and simple manner. The proposed procedure is also computationally advantageous, it amounts to solving a convex optimization program. Overall, the suggested approach offers a practical robust alternative to the ordinary least squares estimator.
MSC:
62F35 Robustness and adaptive procedures (parametric inference)
62J05 Linear regression; mixed models
62J07 Ridge regression; shrinkage estimators (Lasso)
60F10 Large deviations
Software:
robustbase
PDF BibTeX Cite
Full Text: DOI
References:
[1] A. Alfons, C. Croux and S. Gelper. Sparse least trimmed squares regression for analyzing high-dimensional large data sets. Ann. Appl. Stat. 7 (2013) 226-248. · Zbl 1454.62123
[2] A. Belloni, V. Chernozhukov, et al. Least squares after model selection in high-dimensional sparse models. Bernoulli 19 (2013) 521-547. · Zbl 1456.62066
[3] A. Belloni, V. Chernozhukov and L. Wang, Square-root lasso: pivotal recovery of sparse signals via conic programming. Biometrika 98 (2011) 791-806. · Zbl 1228.62083
[4] M. Chen, C. Gao, Z. Ren, et al. Robust covariance and scatter matrix estimation under huber’s contamination model. Ann. Stat. 46 (2018) 1932-1960. · Zbl 1408.62104
[5] O. Collier and A.S. Dalalyan. Rate-optimal estimation of p-dimensional linear functionals in a sparse gaussian model. Preprint (2017).
[6] A.S. Dalalyan, SOCP based variance free Dantzig selector with application to robust estimation. C. R. Math. 350 (2012) 785-788. · Zbl 1369.62162
[7] J. Fan, Q. Li and Y. Wang, Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions. J. R. Stat. Soc. 79 (2017) 247-265. · Zbl 1414.62178
[8] I. Gannaz, Robust estimation and wavelet thresholding in partially linear models. Stat. Comput. 17 (2007) 293-310.
[9] C. Giraud, Introduction to high-dimensional statistics. Chapman and Hall/CRC, Boca Raton (2014) · Zbl 1341.62011
[10] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel. Robust statistics: the approach based on influence functions, Vol. 196. John Wiley & Sons, New Jersey (2011) · Zbl 0593.62027
[11] P.J. Huber et al., Robust estimation of a location parameter. Ann. Math. Stat. 35 (1964) 73-101. · Zbl 0136.39805
[12] S. Lambert-Lacroix, L. Zwald, et al., Robust regression through the huber’s criterion and adaptive lasso penalty. Electron. J. Stat. 5 (2011) 1015-1053. · Zbl 1274.62467
[13] Y. Lee, S.N. MacEachern, Y. Jung, et al., Regularization of case-specific parameters for robustness and efficiency. Stat. Sci. 27 (2012) 350-372. · Zbl 1331.62349
[14] W. Li. Simultaneous variable selection and outlier detection using LASSO with applications to aircraft landing data analysis. Ph.D. thesis, Rutgers University-Graduate School-New Brunswick (2012).
[15] R.A. Maronna, R.D. Martin, V.J. Yohai and M. Salibián-Barrera, Robust statistics: theory and methods (with R). John Wiley & Sons, New Jersey (2018) · Zbl 1409.62009
[16] A.B. Owen, A robust hybrid of lasso and ridge regression. Contemp. Math. 443 (2007) 59-72. · Zbl 1134.62047
[17] P.J. Rousseeuw and A.M. Leroy. Robust regression and outlier detection, Vol. 589. John Wiley & Sons, New Jersey (2005) · Zbl 0711.62030
[18] Y. She and A.B. Owen. Outlier detection using nonconvex penalized regression. J. Am. Stat. Assoc. 106 (2011) 626-639. · Zbl 1232.62068
[19] T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika 99 (2012) 879-898. · Zbl 1452.62515
[20] R. Vershynin, High-dimensional probability: An introduction with applications in data science, Vol. 47. Cambridge University Press, Cambridge (2018) · Zbl 1430.60005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.