×

Inhomogeneous higher-order summary statistics for point processes on linear networks. (English) Zbl 1452.62402

Summary: As a workaround for the lack of transitive transformations on linear network structures, which are required to consider different notions of distributional invariance, including stationarity, we introduce the notions of pseudostationarity and intensity reweighted moment pseudostationarity for point processes on linear networks. Moreover, using arbitrary so-called regular linear network distances, e.g. the Euclidean and the shortest-path distance, we further propose geometrically corrected versions of different higher-order summary statistics, including the inhomogeneous empty space function, the inhomogeneous nearest neighbour distance distribution function and the inhomogeneous \(J\)-function. Such summary statistics detect interactions of order higher than two. We also discuss their nonparametric estimators and through a simulation study, considering models with different types of spatial interaction and different networks, we study the performance of our proposed summary statistics by means of envelopes. Our summary statistic estimators manage to capture clustering, regularity as well as Poisson process independence. Finally, we make use of our new summary statistics to analyse two different datasets: motor vehicle traffic accidents and spiderwebs.

MSC:

62H22 Probabilistic graphical models
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62P30 Applications of statistics in engineering and industry; control charts
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderes E, Møller J, Rasmussen JG (2020) Isotropic covariance functions on graphs and their edges. Ann. Stat. (Forthcoming). arXiv:1710.01295)
[2] Ang, QW; Baddeley, A.; Nair, G., Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology, Scand. J. Stat., 39, 4, 591-617 (2012) · Zbl 1319.62197
[3] Baddeley, A.; Turner, R., spatstat: an R package for analyzing spatial point patterns, J. Stat. Softw., 12, 6, 1-42 (2005)
[4] Baddeley, A.; Møller, J.; Waagepetersen, R., Non-and semi-parametric estimation of interaction in inhomogeneous point patterns, Stat. Neerl., 54, 3, 329-350 (2000) · Zbl 1018.62027
[5] Baddeley, A.; Turner, R.; Møller, J.; Hazelton, M., Residual analysis for spatial point processes, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 67, 5, 617-666 (2005) · Zbl 1112.62302
[6] Baddeley, A.; Jammalamadaka, A.; Nair, G., Multitype point process analysis of spines on the dendrite network of a neuron, J. R. Stat. Soc. Ser. C (Appl. Stat.), 63, 5, 673-694 (2014)
[7] Baddeley, A.; Rubak, E.; Turner, R., Spatial Point Patterns: Methodology and Applications with R (2015), Boca Raton: CRC Press, Boca Raton
[8] Baddeley, A.; Nair, G.; Rakshit, S.; McSwiggan, G., “Stationary” point processes are uncommon on linear networks, Stat, 6, 1, 68-78 (2017)
[9] Bartlett, M., The spectral analysis of two-dimensional point processes, Biometrika, 51, 3-4, 299-311 (1964) · Zbl 0124.08601
[10] Biscio, CAN; Poinas, A.; Waagepetersen, R., A note on gaps in proofs of central limit theorems, Stat. Probab. Lett., 135, 7-10 (2018) · Zbl 1392.60027
[11] Borruso, G.: Network density estimation: analysis of point patterns over a network. In: Computational Science and Its Applications—ICCSA 2005, pp. 126-132. Springer, Berlin (2005)
[12] Borruso, G., Network density estimation: a GIS approach for analysing point patterns in a network space, Trans. GIS, 12, 3, 377-402 (2008)
[13] Chiu, SN; Stoyan, D.; Kendall, WS; Mecke, J., Stochastic Geometry and Its Applications (2013), New York: Wiley, New York · Zbl 1291.60005
[14] Christensen, H.S., Møller, J.: Modelling Spine Locations on Dendrite Trees Using Inhomogeneous Cox Point Processes. arXiv preprint arXiv:1907.12283 (2019)
[15] Cronie, O.; van Lieshout, MNM, A J-function for inhomogeneous spatio-temporal point processes, Scand. J. Stat., 42, 562-579 (2015) · Zbl 1364.60063
[16] Cronie, O.; van Lieshout, MNM, Summary statistics for inhomogeneous marked point processes, Ann. Inst. Stat. Math., 68, 905-928 (2016) · Zbl 1400.62209
[17] Cronie, O.; van Lieshout, MNM, A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions, Biometrika, 105, 2, 455-462 (2018) · Zbl 07072424
[18] Daley, DJ; Vere-Jones, D., An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure (2008), New York: Springer, New York · Zbl 1159.60003
[19] Diggle, P., On parameter estimation and goodness-of-fit testing for spatial point patterns, Biometrics, 35, 1, 87-101 (1979) · Zbl 0418.62075
[20] Eckardt, M.; Mateu, J., Point patterns occurring on complex structures in space and space-time: an alternative network approach, J. Comput. Graph. Stat., 27, 2, 312-322 (2018) · Zbl 07498949
[21] Iftimi, A.; Cronie, O.; Montes, F., Second-order analysis of marked inhomogeneous spatiotemporal point processes: applications to earthquake data, Scandinavian J. Stat., 46, 3, 661-685 (2019) · Zbl 1434.62232
[22] Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns (2008), New York: Wiley, New York · Zbl 1197.62135
[23] Kallenberg, O., Random Measures, Theory and Applications (2017), Berlin: Springer, Berlin · Zbl 1376.60003
[24] Levine, N., Houston, Texas, Metropolitan Traffic Safety Planning Program, Transp. Res. Rec. J. Transp. Res. Board, 1969, 92-100 (2006)
[25] Levine, N.; Geertman, S.; Stillwell, J., A motor vehicle safety planning support system: the Houston experience, Planning Support Systems Best Practice and New Methods, 93-111 (2009), Dordrecht: Springer, Dordrecht
[26] Mateu, J., Moradi, M., Cronie, O.:Spatio-temporal point patterns on linear networks: Pseudo-separable intensity estimation. Spatial Stat. (2019). 10.1016/j.spasta.2019.100400
[27] McSwiggan, G.; Baddeley, A.; Nair, G., Kernel density estimation on a linear network, Scand. J. Stat., 44, 2, 324-345 (2017) · Zbl 1422.62091
[28] Møller, J.; Waagepetersen, R., Statistical Inference and Simulation for Spatial Point Processes (2004), Boca Raton: CRC Press, Boca Raton · Zbl 1044.62101
[29] Møller, J.; Syversveen, AR; Waagepetersen, RP, Log Gaussian Cox processes, Scand. J. Stat., 25, 3, 451-482 (1998) · Zbl 0931.60038
[30] Moradi, M.M.: Spatial and Spatio-Temporal Point Patterns on Linear Networks. PhD dissertation, University Jaume I (2018)
[31] Moradi, MM; Mateu, J., First and second-order characteristics of spatio-temporal point processes on linear networks, J. Comput. Graph. Stat. (2019) · Zbl 07499286 · doi:10.1080/10618600.2019.1694524
[32] Moradi, MM; Rodriguez-Cortes, F.; Mateu, J., On kernel-based intensity estimation of spatial point patterns on linear networks, J. Comput. Graph. Stat., 27, 2, 302-311 (2018) · Zbl 07498948
[33] Moradi, MM; Cronie, O.; Rubak, E.; Lachieze-Rey, R.; Mateu, J.; Baddeley, A., Resample-smoothing of Voronoi intensity estimators, Stat. Comput., 29, 5, 995-1010 (2019) · Zbl 1430.62073
[34] Okabe, A.; Sugihara, K., Spatial Analysis along Networks: Statistical and Computational Methods (2012), New York: Wiley, New York · Zbl 1256.62056
[35] Okabe, A.; Yamada, I., The K-function method on a network and its computational implementation, Geogr. Anal., 33, 3, 271-290 (2001)
[36] Okabe, A.; Satoh, T.; Sugihara, K., A kernel density estimation method for networks, its computational method and a GIS-based tool, Int. J. Geogr. Inf. Sci., 23, 1, 7-32 (2009)
[37] Paloheimo, J., On a theory of search, Biometrika, 58, 1, 61-75 (1971) · Zbl 0218.62101
[38] Peebles, PJE, The Large-Scale Structure of The Universe (1980), Princeton: Princeton University Press, Princeton · Zbl 1422.85005
[39] R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2020)
[40] Rakshit, S.; Nair, G.; Baddeley, A., Second-order analysis of point patterns on a network using any distance metric, Spat. Stat., 22, 129-154 (2017)
[41] Rakshit, S.; Baddeley, A.; Nair, G., Efficient code for second order analysis of events on a linear network, J. Stat. Softw., 90, 1, 1-37 (2019)
[42] Rakshit, S.; Davies, TM; Moradi, MM; McSwiggan, G.; Nair, G.; Mateu, J.; Baddeley, A., Fast kernel smoothing of point patterns on a large network using two-dimensional convolution, Int. Stat. Rev., 87, 3, 531-556 (2019) · Zbl 07763604
[43] Scott, DW, Multivariate Density Estimation: Theory, Practice, and Visualization (2015), New York: Wiley, New York · Zbl 1311.62004
[44] van Lieshout, MNM, A J-function for marked point patterns, Ann. Inst. Stat. Math., 58, 2, 235 (2006) · Zbl 1097.62094
[45] van Lieshout, MNM, A J-function for inhomogeneous point processes, Stat. Neerl., 65, 2, 183-201 (2011)
[46] van Lieshout, MNM; Baddeley, A., A nonparametric measure of spatial interaction in point patterns, Stat. Neerl., 50, 3, 344-361 (1996) · Zbl 0898.62118
[47] Voss, S.: Habitat Preferences and Spatial Dynamics of the Urban Wall Spider: Oecobius Annulipes Lucas. Ph.D. thesis, Honours thesis, Department of Zoology, University of Western Australia (1999)
[48] Xie, Z.; Yan, J., Kernel density estimation of traffic accidents in a network space, Comput. Environ. Urban Syst., 32, 5, 396-406 (2008)
[49] Zessin, H., The method of moments for random measures, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 62, 3, 395-409 (1983) · Zbl 0489.60063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.