Eskenazis, Alexandros On extremal sections of subspaces of \(L_p\). (English) Zbl 07308726 Discrete Comput. Geom. 65, No. 2, 489-509 (2021). MSC: 52A40 52A20 52A21 52A23 46B20 46B09 PDF BibTeX XML Cite \textit{A. Eskenazis}, Discrete Comput. Geom. 65, No. 2, 489--509 (2021; Zbl 07308726) Full Text: DOI
Wang, Kangji; Gong, Wanzhong Non-\(l_n^{(1)}\) point and uniformly non-\(l_n^{(1)}\) point in Orlicz-Bochner sequence spaces. (English) Zbl 07295979 Math. Appl. 33, No. 3, 652-665 (2020). MSC: 46B20 46B45 PDF BibTeX XML Cite \textit{K. Wang} and \textit{W. Gong}, Math. Appl. 33, No. 3, 652--665 (2020; Zbl 07295979)
Ramasinghe, W. Multidimensional moduli of convexity and rotundity in Banach spaces. (English. Russian original) Zbl 07247839 Funct. Anal. Appl. 54, No. 1, 59-63 (2020); translation from Funkts. Anal. Prilozh. 54, No. 1, 75-80 (2020). Reviewer: Barry Turett (Rochester) MSC: 46B20 PDF BibTeX XML Cite \textit{W. Ramasinghe}, Funct. Anal. Appl. 54, No. 1, 59--63 (2020; Zbl 07247839); translation from Funkts. Anal. Prilozh. 54, No. 1, 75--80 (2020) Full Text: DOI
Deville, Robert; García-Bravo, Miguel Normal tilings of a Banach space and its ball. (English) Zbl 1450.46009 Mathematika 66, No. 3, 752-764 (2020). Reviewer: Vladimir Kadets (Kharkiv) MSC: 46B20 05B45 51M20 52C22 PDF BibTeX XML Cite \textit{R. Deville} and \textit{M. García-Bravo}, Mathematika 66, No. 3, 752--764 (2020; Zbl 1450.46009) Full Text: DOI
Azagra, Daniel; Mudarra, Carlos Prescribing tangent hyperplanes to \(C^{1,1}\) and \(C^{1, \omega}\) convex hypersurfaces in Hilbert and superreflexive Banach spaces. (English) Zbl 1444.52001 J. Convex Anal. 27, No. 1, 79-102 (2020). Reviewer: Juan-Enrique Martínez-Legaz (Barcelona) MSC: 52A07 52A20 46C05 46B10 PDF BibTeX XML Cite \textit{D. Azagra} and \textit{C. Mudarra}, J. Convex Anal. 27, No. 1, 79--102 (2020; Zbl 1444.52001) Full Text: Link
Merino, Bernardo González On large equilateral point-sets in normed spaces. (English) Zbl 1447.52009 Arch. Math. 114, No. 5, 553-559 (2020). Reviewer: Norbert Knarr (Stuttgart) MSC: 52A21 52A20 46B20 PDF BibTeX XML Cite \textit{B. G. Merino}, Arch. Math. 114, No. 5, 553--559 (2020; Zbl 1447.52009) Full Text: DOI
Raj, Kuldip; Jamwal, Seema Difference sequence spaces of \(K\)-functions. (English) Zbl 1438.46009 Ann. Acad. Rom. Sci., Math. Appl. 11, No. 1, 5-23 (2019). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. Jamwal}, Ann. Acad. Rom. Sci., Math. Appl. 11, No. 1, 5--23 (2019; Zbl 1438.46009) Full Text: Link
Huang, Xujian; Tan, Dongni A Tingley’s type problem in \(n\)-normed spaces. (English) Zbl 1434.46006 Aequationes Math. 93, No. 5, 905-918 (2019). MSC: 46B04 51K05 PDF BibTeX XML Cite \textit{X. Huang} and \textit{D. Tan}, Aequationes Math. 93, No. 5, 905--918 (2019; Zbl 1434.46006) Full Text: DOI
Batkunde, Harmanus; Gunawan, Hendra On the topology of \(n\)-normed spaces with respect to norms of its quotient spaces. (English) Zbl 1438.46031 Adv. Stud. Contemp. Math., Kyungshang 29, No. 1, 89-98 (2019). MSC: 46B99 54B15 PDF BibTeX XML Cite \textit{H. Batkunde} and \textit{H. Gunawan}, Adv. Stud. Contemp. Math., Kyungshang 29, No. 1, 89--98 (2019; Zbl 1438.46031) Full Text: arXiv
Liu, Yachai; Yang, Xiuzhong; Liu, Guofen Stability of an AQCQ functional equation in non-Archimedean \((n, \beta)\)-normed spaces. (English) Zbl 07074047 Demonstr. Math. 52, 130-146 (2019). MSC: 39B52 39B82 39B72 PDF BibTeX XML Cite \textit{Y. Liu} et al., Demonstr. Math. 52, 130--146 (2019; Zbl 07074047) Full Text: DOI
Kanzow, C.; Karl, Veronika; Steck, Daniel; Wachsmuth, Daniel The multiplier-penalty method for generalized Nash equilibrium problems in Banach spaces. (English) Zbl 1419.91105 SIAM J. Optim. 29, No. 1, 767-793 (2019). MSC: 91A23 91A06 49N70 46B99 PDF BibTeX XML Cite \textit{C. Kanzow} et al., SIAM J. Optim. 29, No. 1, 767--793 (2019; Zbl 1419.91105) Full Text: DOI
Jahn, Thomas Orthogonality in generalized Minkowski spaces. (English) Zbl 1421.46016 J. Convex Anal. 26, No. 1, 49-76 (2019). Reviewer: Ljiljana Arambašić (Zagreb) MSC: 46B20 52A20 52A21 52A41 90C25 PDF BibTeX XML Cite \textit{T. Jahn}, J. Convex Anal. 26, No. 1, 49--76 (2019; Zbl 1421.46016) Full Text: Link arXiv
González Merino, Bernardo; Jahn, Thomas; Richter, Christian Uniqueness of circumcenters in generalized Minkowski spaces. (English) Zbl 1402.52003 J. Approx. Theory 237, 153-159 (2019). MSC: 52A20 41A28 41A52 41A65 52A21 52A40 PDF BibTeX XML Cite \textit{B. González Merino} et al., J. Approx. Theory 237, 153--159 (2019; Zbl 1402.52003) Full Text: DOI arXiv
Brzdęk, Janusz; Ciepliński, Krzysztof A fixed point theorem in \(n\)-Banach spaces and Ulam stability. (English) Zbl 1441.39025 J. Math. Anal. Appl. 470, No. 1, 632-646 (2019). MSC: 39B52 39B82 47H10 PDF BibTeX XML Cite \textit{J. Brzdęk} and \textit{K. Ciepliński}, J. Math. Anal. Appl. 470, No. 1, 632--646 (2019; Zbl 1441.39025) Full Text: DOI
Konwar, Nabanita; Debnath, Pradip Intuitionistic fuzzy \(n\)-normed algebra and continuous product. (English) Zbl 07218817 Proyecciones 37, No. 1, 68-83 (2018). MSC: 46S40 PDF BibTeX XML Cite \textit{N. Konwar} and \textit{P. Debnath}, Proyecciones 37, No. 1, 68--83 (2018; Zbl 07218817) Full Text: DOI
Jalal, Tanweer; Malik, Ishfaq Ahmad \(I\)-convergence of triple difference sequence spaces over \(n\)-normed space. (English) Zbl 1441.46002 Tbil. Math. J. 11, No. 4, 93-102 (2018). MSC: 46A45 40J05 40C05 PDF BibTeX XML Cite \textit{T. Jalal} and \textit{I. A. Malik}, Tbil. Math. J. 11, No. 4, 93--102 (2018; Zbl 1441.46002) Full Text: DOI Euclid
Raj, K.; Anand, R. On statistical convergence in generalized lacunary sequence spaces. (On statistical convergence in generalized Lacunary sequence spaces.) (English) Zbl 1434.40007 Bul. Acad. Ştiinţe Repub. Mold., Mat. 2018, No. 2(87), 17-29 (2018). MSC: 40A35 40J05 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{R. Anand}, Bul. Acad. Ştiinţe Repub. Mold., Mat. 2018, No. 2(87), 17--29 (2018; Zbl 1434.40007) Full Text: Link
Khan, Vakeel A.; Alshlool, Kamal M. A. S.; Abdullah, Sameera A. A.; Rababah, Rami K. A.; Ahmad, Ayaz Some new classes of paranorm ideal convergent double sequences of sigma-bounded variation over \(n\)-normed spaces. (English) Zbl 1438.46004 Cogent Math. Stat. 5, Article ID 1460029, 13 p. (2018). MSC: 46A45 40C05 PDF BibTeX XML Cite \textit{V. A. Khan} et al., Cogent Math. Stat. 5, Article ID 1460029, 13 p. (2018; Zbl 1438.46004) Full Text: DOI
Raj, Kuldip; Sharma, Charu Ideal convergent generalized difference sequence spaces of infinite matrix and Orlicz function. (English) Zbl 1429.46005 Ital. J. Pure Appl. Math. 40, 34-46 (2018). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{K. Raj} and \textit{C. Sharma}, Ital. J. Pure Appl. Math. 40, 34--46 (2018; Zbl 1429.46005) Full Text: Link
Jalal, Tanweer; Malik, Ishfaq Ahmad \(I\)-convergent triple sequence spaces over \(n\)-normed space. (English) Zbl 1415.40002 Asia Pac. J. Math. 5, No. 2, 233-242 (2018). MSC: 40A05 40C05 46A45 PDF BibTeX XML Cite \textit{T. Jalal} and \textit{I. A. Malik}, Asia Pac. J. Math. 5, No. 2, 233--242 (2018; Zbl 1415.40002) Full Text: Link
Raj, Kuldip; Sharma, Charu Some difference sequence spaces of infinite matrix and Orlicz function. (English) Zbl 1414.40002 Adv. Stud. Contemp. Math., Kyungshang 28, No. 3, 369-380 (2018). MSC: 40A05 46A19 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{C. Sharma}, Adv. Stud. Contemp. Math., Kyungshang 28, No. 3, 369--380 (2018; Zbl 1414.40002)
Leopold, Undine; Martini, Horst Monge points, Euler lines, and Feuerbach spheres in Minkowski spaces. (English) Zbl 1415.51030 Conder, Marston D. E. (ed.) et al., Discrete geometry and symmetry. Dedicated to Károly Bezdek and Egon Schulte on the occasion of their 60th birthdays. Selected papers based on the presentations at the conference ‘Geometry and symmetry’, Veszprém, Hungary, June 29 – July 3, 2015. Cham: Springer. Springer Proc. Math. Stat. 234, 235-255 (2018). Reviewer: Victor V. Pambuccian (Glendale) MSC: 51M20 46B20 51M05 52A10 52A20 52A21 52B11 PDF BibTeX XML Cite \textit{U. Leopold} and \textit{H. Martini}, Springer Proc. Math. Stat. 234, 235--255 (2018; Zbl 1415.51030) Full Text: DOI arXiv
Druzhinin, Yu. Yu. On selections from the best \(n\)-nets. (English. Russian original) Zbl 1408.41028 Math. Notes 104, No. 5, 678-682 (2018); translation from Mat. Zametki 104, No. 5, 694-699 (2018). MSC: 41A65 46B20 PDF BibTeX XML Cite \textit{Yu. Yu. Druzhinin}, Math. Notes 104, No. 5, 678--682 (2018; Zbl 1408.41028); translation from Mat. Zametki 104, No. 5, 694--699 (2018) Full Text: DOI
Sharma, Sunil K. Ideal convergent sequence spaces with respect to invariant mean and a Musielak-Orlicz function over \(n\)-normed spaces. (English) Zbl 1412.40017 Int. J. Anal. Appl. 16, No. 6, 882-893 (2018). MSC: 40A05 40A35 46A45 PDF BibTeX XML Cite \textit{S. K. Sharma}, Int. J. Anal. Appl. 16, No. 6, 882--893 (2018; Zbl 1412.40017) Full Text: Link
Kir, Mehmet; Dutta, Hemen; Acikgoz, Mehmet; Araci, Serkan Identities on some special polynomials derived from the concepts of \(n\)-normed structures, accretive operators and contraction mappings. (Identities on some special poynomials derived from the concepts of \(n\)-normed structures, accretive operators and contraction mappings.) (English) Zbl 1398.47002 Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 2, 787-792 (2018). MSC: 47H06 47H09 PDF BibTeX XML Cite \textit{M. Kir} et al., Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 2, 787--792 (2018; Zbl 1398.47002) Full Text: DOI
Chinen, Naotsugu On isometries of symmetric products of metric spaces. (English) Zbl 1402.54023 Topology Appl. 248, 24-39 (2018). Reviewer: Takamitsu Yamauchi (Matsuyama) MSC: 54B20 54B10 22F50 30C65 30L10 22A05 PDF BibTeX XML Cite \textit{N. Chinen}, Topology Appl. 248, 24--39 (2018; Zbl 1402.54023) Full Text: DOI
Jonard-Pérez, Natalia; Sánchez-Pérez, Enrique A. Local compactness in right bounded asymmetric normed spaces. (English) Zbl 1404.46008 Quaest. Math. 41, No. 4, 549-563 (2018). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46A50 46A55 46B50 52A07 52A20 52A21 PDF BibTeX XML Cite \textit{N. Jonard-Pérez} and \textit{E. A. Sánchez-Pérez}, Quaest. Math. 41, No. 4, 549--563 (2018; Zbl 1404.46008) Full Text: DOI
Leopold, Undine; Martini, Horst Geometry of simplices in Minkowski spaces. (English) Zbl 1400.51017 Result. Math. 73, No. 2, Paper No. 83, 17 p. (2018). MSC: 51M20 51M05 52A10 52A20 52A21 52B11 PDF BibTeX XML Cite \textit{U. Leopold} and \textit{H. Martini}, Result. Math. 73, No. 2, Paper No. 83, 17 p. (2018; Zbl 1400.51017) Full Text: DOI arXiv
Liu, Liguang; Xiao, Jie; Yang, Dachun; Yuan, Wen Gaussian capacity analysis. (English) Zbl 1412.60004 Lecture Notes in Mathematics 2225. Cham: Springer (ISBN 978-3-319-95039-6/pbk; 978-3-319-95040-2/ebook). ix, 108 p. (2018). Reviewer: Ludwig Paditz (Dresden) MSC: 60-02 60B11 60G15 46B20 31B15 42B35 53C65 PDF BibTeX XML Cite \textit{L. Liu} et al., Gaussian capacity analysis. Cham: Springer (2018; Zbl 1412.60004) Full Text: DOI
Raj, K.; Sharma, C.; Pandoh, S. On some generalized spaces of sequences via Riesz mean and Musielak-Orlicz function. (English) Zbl 1399.46007 Southeast Asian Bull. Math. 42, No. 2, 251-266 (2018). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} et al., Southeast Asian Bull. Math. 42, No. 2, 251--266 (2018; Zbl 1399.46007)
Huang, Xujian; Tan, Dongni Mappings of preserving \(n\)-distance one in \(n\)-normed spaces. (English) Zbl 1403.46010 Aequationes Math. 92, No. 3, 401-413 (2018). MSC: 46B04 51K05 PDF BibTeX XML Cite \textit{X. Huang} and \textit{D. Tan}, Aequationes Math. 92, No. 3, 401--413 (2018; Zbl 1403.46010) Full Text: DOI arXiv
Gong, Wanzhong; Zhou, Chenghua; Dong, Xiaoli Uniformly non-\(l_n^{(1)}\), locally uniformly non-\(l_n^{(1)}\) and non-\(l_n^{(1)}\) properties in Orlicz-Bochner function spaces endowed with the Orlicz norm. (English) Zbl 1400.46032 J. Math. Anal. Appl. 462, No. 2, 1283-1297 (2018). Reviewer: Barry Turett (Rochester) MSC: 46E40 46B20 PDF BibTeX XML Cite \textit{W. Gong} et al., J. Math. Anal. Appl. 462, No. 2, 1283--1297 (2018; Zbl 1400.46032) Full Text: DOI
Ciepliński, Krzysztof On approximate homomorphisms of ternary semigroups. (English) Zbl 1412.12006 J. Nonlinear Sci. Appl. 10, No. 8, 4071-4076 (2017). MSC: 12J25 17A40 39B52 39B82 PDF BibTeX XML Cite \textit{K. Ciepliński}, J. Nonlinear Sci. Appl. 10, No. 8, 4071--4076 (2017; Zbl 1412.12006) Full Text: DOI
Manuharawati; Jakfar, Muhammad Thy-angle in an \(n\)-normed space. (English) Zbl 1391.46031 Far East J. Math. Sci. (FJMS) 102, No. 5, 979-994 (2017). MSC: 46B99 PDF BibTeX XML Cite \textit{Manuharawati} and \textit{M. Jakfar}, Far East J. Math. Sci. (FJMS) 102, No. 5, 979--994 (2017; Zbl 1391.46031) Full Text: DOI Link
Jebril, Iqbal H. \(\alpha\)-\(n\)-norms and \(n\)-bounded linear operator in random \(n\)-normed space. (English) Zbl 1381.54029 Ann. Fuzzy Math. Inform. 14, No. 2, 193-205 (2017). MSC: 54E70 46B09 46A70 PDF BibTeX XML Cite \textit{I. H. Jebril}, Ann. Fuzzy Math. Inform. 14, No. 2, 193--205 (2017; Zbl 1381.54029) Full Text: Link
Konwar, Nabanita; Debnath, Pradip Continuity and Banach contraction principle in intuitionistic fuzzy \(n\)-normed linear spaces. (English) Zbl 1376.47003 J. Intell. Fuzzy Syst. 33, No. 4, 2363-2373 (2017). MSC: 47S40 47H10 PDF BibTeX XML Cite \textit{N. Konwar} and \textit{P. Debnath}, J. Intell. Fuzzy Syst. 33, No. 4, 2363--2373 (2017; Zbl 1376.47003) Full Text: DOI
Guo, Lujun; Chen, Ruifang On the Orlicz symmetry operator. (English) Zbl 1385.52002 Math. Inequal. Appl. 20, No. 4, 1189-1199 (2017). Reviewer: Gennadiy Averkov (Magdeburg) MSC: 52A20 52A40 33C55 52A38 PDF BibTeX XML Cite \textit{L. Guo} and \textit{R. Chen}, Math. Inequal. Appl. 20, No. 4, 1189--1199 (2017; Zbl 1385.52002) Full Text: DOI
Gehér, György Pál On \(n\)-norm preservers and the Aleksandrov conservative \(n\)-distance problem. (English) Zbl 1384.46007 Aequationes Math. 91, No. 5, 933-943 (2017). MSC: 46B04 46B20 PDF BibTeX XML Cite \textit{G. P. Gehér}, Aequationes Math. 91, No. 5, 933--943 (2017; Zbl 1384.46007) Full Text: DOI
Mursaleen, M.; Sharma, S. K. Riesz lacunary almost convergent double sequence spaces defined by sequence of Orlicz functions over \(n\)-normed spaces. (English) Zbl 1387.46010 TWMS J. Pure Appl. Math. 8, No. 1, 43-63 (2017). MSC: 46A45 40A35 40G15 40B05 PDF BibTeX XML Cite \textit{M. Mursaleen} and \textit{S. K. Sharma}, TWMS J. Pure Appl. Math. 8, No. 1, 43--63 (2017; Zbl 1387.46010)
Jahn, Thomas; Martini, Horst; Richter, Christian Ball convex bodies in Minkowski spaces. (English) Zbl 1378.46015 Pac. J. Math. 289, No. 2, 287-316 (2017). MSC: 46B20 52A01 52A20 52A21 52A35 PDF BibTeX XML Cite \textit{T. Jahn} et al., Pac. J. Math. 289, No. 2, 287--316 (2017; Zbl 1378.46015) Full Text: DOI arXiv
Konwar, Nabanita; Debnath, Pradip \(I_\lambda\)-convergence in intuitionistic fuzzy \(n\)-normed linear space. (English) Zbl 1382.40013 Ann. Fuzzy Math. Inform. 13, No. 1, 91-107 (2017). MSC: 40A35 40J05 26E50 PDF BibTeX XML Cite \textit{N. Konwar} and \textit{P. Debnath}, Ann. Fuzzy Math. Inform. 13, No. 1, 91--107 (2017; Zbl 1382.40013) Full Text: Link
Xue, F.; Zong, C. Minkowski bisectors, Minkowski cells and lattice coverings. (English) Zbl 1392.52008 Geom. Dedicata 188, 123-139 (2017). Reviewer: Horst Martini (Chemnitz) MSC: 52B10 52C07 52C17 PDF BibTeX XML Cite \textit{F. Xue} and \textit{C. Zong}, Geom. Dedicata 188, 123--139 (2017; Zbl 1392.52008) Full Text: DOI
De Bernardi, Carlo Alberto; Veselý, Libor Tilings of normed spaces. (English) Zbl 1371.46015 Can. J. Math. 69, No. 2, 321-337 (2017). Reviewer: Vladimir Kadets (Kharkiv) MSC: 46B20 52C22 52A07 PDF BibTeX XML Cite \textit{C. A. De Bernardi} and \textit{L. Veselý}, Can. J. Math. 69, No. 2, 321--337 (2017; Zbl 1371.46015) Full Text: DOI
Schechtman, Gideon Book review of: S. Artstein-Avidan et al., Asymptotic geometric analysis. I. (English) Zbl 1357.00012 Bull. Am. Math. Soc., New Ser. 54, No. 2, 341-345 (2017). MSC: 00A17 52-02 52A20 52A21 52A23 46B20 46B09 60D05 PDF BibTeX XML Cite \textit{G. Schechtman}, Bull. Am. Math. Soc., New Ser. 54, No. 2, 341--345 (2017; Zbl 1357.00012) Full Text: DOI
Horváth, Ákos G.; Lángi, Zsolt; Spirova, Margarita Semi-inner products and the concept of semi-polarity. (English) Zbl 1367.46023 Result. Math. 71, No. 1-2, 127-144 (2017). Reviewer: V. Lokesha (Bangalore) MSC: 46C50 46B99 52A20 52A21 PDF BibTeX XML Cite \textit{Á. G. Horváth} et al., Result. Math. 71, No. 1--2, 127--144 (2017; Zbl 1367.46023) Full Text: DOI arXiv
Zhu, Liang; Liu, Feifei; Meng, Weiyi; Ma, Qin; Wang, Yu; Yuan, Fang Evaluating top-\(N\) queries in \(n\)-dimensional normed spaces. (English) Zbl 1428.68141 Inf. Sci. 374, 255-275 (2016). MSC: 68P15 PDF BibTeX XML Cite \textit{L. Zhu} et al., Inf. Sci. 374, 255--275 (2016; Zbl 1428.68141) Full Text: DOI
Savaş, Ekrem; Öztürk, Mahpeyker \(\lambda\)-statistical convergence of order \(\alpha\) in intuitionistic fuzzy \(n\)-normed spaces. (English) Zbl 1398.40011 Notes IFS 22, No. 2, 32-43 (2016). MSC: 40A35 46S40 PDF BibTeX XML Cite \textit{E. Savaş} and \textit{M. Öztürk}, Notes IFS 22, No. 2, 32--43 (2016; Zbl 1398.40011) Full Text: Link
Srivastava, J. K.; Singh, Pradeep Kumar On some Cauchy sequences defined in \(l^p\) considered as \(n\)-normed space. (English) Zbl 1371.46022 J. Rajasthan Acad. Phys. Sci. 15, No. 1-2, 107-115 (2016). MSC: 46B99 PDF BibTeX XML Cite \textit{J. K. Srivastava} and \textit{P. K. Singh}, J. Rajasthan Acad. Phys. Sci. 15, No. 1--2, 107--115 (2016; Zbl 1371.46022)
Debnath, Pradip A generalized statistical convergence in intuitionistic fuzzy \(n\)-normed linear spaces. (English) Zbl 1369.40002 Ann. Fuzzy Math. Inform. 12, No. 4, 559-572 (2016). MSC: 40A35 40J05 46S40 PDF BibTeX XML Cite \textit{P. Debnath}, Ann. Fuzzy Math. Inform. 12, No. 4, 559--572 (2016; Zbl 1369.40002) Full Text: Link
Betiuk-Pilarska, Anna; Szczepanik, Mariusz The \(n\)-th James constants of interpolation spaces. (English) Zbl 1364.46012 J. Nonlinear Convex Anal. 17, No. 10, 2039-2047 (2016). MSC: 46B20 46B70 PDF BibTeX XML Cite \textit{A. Betiuk-Pilarska} and \textit{M. Szczepanik}, J. Nonlinear Convex Anal. 17, No. 10, 2039--2047 (2016; Zbl 1364.46012) Full Text: Link
Erfanmanesh, Saedeh; Foroutannia, D. Generalizations of Köthe-Toeplitz duals and null duals of new difference sequence spaces. (English) Zbl 1367.46005 J. Contemp. Math. Anal., Armen. Acad. Sci. 51, No. 3, 125-133 (2016) and Izv. Nats. Akad. Nauk Armen., Mat. 51, No. 3, 28-40 (2016). MSC: 46A45 40A05 40C05 PDF BibTeX XML Cite \textit{S. Erfanmanesh} and \textit{D. Foroutannia}, J. Contemp. Math. Anal., Armen. Acad. Sci. 51, No. 3, 125--133 (2016; Zbl 1367.46005) Full Text: DOI
Alimov, Alexey R. Mazur spaces and 4.3-intersection property of \((BM)\)-spaces. (Russian. English summary) Zbl 1361.46011 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 16, No. 2, 133-137 (2016). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46B20 46B04 52A21 52B11 52A35 PDF BibTeX XML Cite \textit{A. R. Alimov}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 16, No. 2, 133--137 (2016; Zbl 1361.46011) Full Text: DOI
Jahn, Thomas; Martini, Horst; Richter, Christian Bi- and multifocal curves and surfaces for gauges. (English) Zbl 1348.51006 J. Convex Anal. 23, No. 3, 733-774 (2016). Reviewer: Hans-Peter Schröcker (Innsbruck) MSC: 51M04 46B20 14H50 49J53 52A10 52A21 53A04 14H45 53A05 PDF BibTeX XML Cite \textit{T. Jahn} et al., J. Convex Anal. 23, No. 3, 733--774 (2016; Zbl 1348.51006) Full Text: Link
Shatanawi, Wasfi; Postolache, Mihai On \(n\)-collinear elements and Riesz theorem. (English) Zbl 1358.46021 J. Nonlinear Sci. Appl. 9, No. 5, 3066-3073 (2016). MSC: 46B99 PDF BibTeX XML Cite \textit{W. Shatanawi} and \textit{M. Postolache}, J. Nonlinear Sci. Appl. 9, No. 5, 3066--3073 (2016; Zbl 1358.46021) Full Text: DOI Link
Khan, Nazneen Classes of \(I\)-convergent double sequences over \(n\)-normed spaces. (English) Zbl 1360.46004 J. Funct. Spaces 2016, Article ID 7594031, 7 p. (2016). MSC: 46A45 40A35 40B05 PDF BibTeX XML Cite \textit{N. Khan}, J. Funct. Spaces 2016, Article ID 7594031, 7 p. (2016; Zbl 1360.46004) Full Text: DOI
Jonard-Pérez, Natalia; Sánchez Pérez, Enrique A. Extreme points and geometric aspects of compact convex sets in asymmetric normed spaces. (English) Zbl 1344.46006 Topology Appl. 203, 12-21 (2016). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46A55 46A50 46B50 52A07 52A20 PDF BibTeX XML Cite \textit{N. Jonard-Pérez} and \textit{E. A. Sánchez Pérez}, Topology Appl. 203, 12--21 (2016; Zbl 1344.46006) Full Text: DOI arXiv
Shen, Yonghong; Chen, Wei On the Ulam stability of an \(n\)-dimensional quadratic functional equation. (English) Zbl 1329.39034 J. Nonlinear Sci. Appl. 9, No. 1, 332-341 (2016). MSC: 39B82 39B52 46S10 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{W. Chen}, J. Nonlinear Sci. Appl. 9, No. 1, 332--341 (2016; Zbl 1329.39034) Full Text: DOI Link
Jamwal, Seema; Raj, Kuldip An Orlicz extension of difference modular sequence spaces. (English) Zbl 1412.40009 Bol. Soc. Parana. Mat. (3) 33, No. 2, 31-57 (2015). MSC: 40A05 46A45 PDF BibTeX XML Cite \textit{S. Jamwal} and \textit{K. Raj}, Bol. Soc. Parana. Mat. (3) 33, No. 2, 31--57 (2015; Zbl 1412.40009) Full Text: Link
Pandoh, Suruchi; Raj, Kuldip Generalised Cesàro-Orlicz double sequence spaces over \(n\)-normed spaces. (English) Zbl 1412.46014 J. Nonlinear Anal. Optim. 6, No. 2, 53-65 (2015). MSC: 46A45 40J05 PDF BibTeX XML Cite \textit{S. Pandoh} and \textit{K. Raj}, J. Nonlinear Anal. Optim. 6, No. 2, 53--65 (2015; Zbl 1412.46014) Full Text: Link
Raj, Kuldip; Pandoh, Suruchi On some Zweier \(I\)-convergent difference sequence spaces. (English) Zbl 1365.46004 J. Appl. Funct. Anal. 10, No. 1-2, 143-163 (2015). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. Pandoh}, J. Appl. Funct. Anal. 10, No. 1--2, 143--163 (2015; Zbl 1365.46004)
Mursaleen, M.; Raj, Kuldip; Sharma, Sunil K. Some spaces of difference sequences and lacunary statistical convergence in \(n\)-normed space defined by sequence of Orlicz functions. (English) Zbl 1340.46010 Miskolc Math. Notes 16, No. 1, 283-304 (2015). MSC: 46A45 40A35 40B05 PDF BibTeX XML Cite \textit{M. Mursaleen} et al., Miskolc Math. Notes 16, No. 1, 283--304 (2015; Zbl 1340.46010)
Raj, Kuldip; Sharma, Sunil Kumar Applications of double lacunary sequences to \(n\)-norm. (English) Zbl 1351.46008 Acta Univ. Sapientiae, Math. 7, No. 1, 67-88 (2015). MSC: 46A45 40B05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Acta Univ. Sapientiae, Math. 7, No. 1, 67--88 (2015; Zbl 1351.46008) Full Text: DOI
Jahn, Thomas; Kupitz, Yaakov S.; Martini, Horst; Richter, Christian Minsum location extended to gauges and to convex sets. (English) Zbl 1329.52010 J. Optim. Theory Appl. 166, No. 3, 711-746 (2015). Reviewer: S. S. Kutateladze (Novosibirsk) MSC: 52A41 46N10 46A22 46B20 49K10 49N15 52A20 52A21 90B85 90C25 90C46 PDF BibTeX XML Cite \textit{T. Jahn} et al., J. Optim. Theory Appl. 166, No. 3, 711--746 (2015; Zbl 1329.52010) Full Text: DOI arXiv
Artstein-Avidan, Shiri; Giannopoulos, Apostolos; Milman, Vitali D. Asymptotic geometric analysis. I. (English) Zbl 1337.52001 Mathematical Surveys and Monographs 202. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2193-9/hbk). xix, 451 p. (2015). Reviewer: Maria A. Hernández Cifre (Murcia) MSC: 52-02 52A20 52A21 52A23 46B20 46B09 60D05 PDF BibTeX XML Cite \textit{S. Artstein-Avidan} et al., Asymptotic geometric analysis. I. Providence, RI: American Mathematical Society (AMS) (2015; Zbl 1337.52001) Full Text: DOI
Raj, Kuldip; Anand, Renu; Jamwal, Seema Some double \(\lambda\)-convergent sequence spaces over \(n\)-normed spaces. (English) Zbl 1339.46006 Aust. J. Math. Anal. Appl. 12, No. 1, Article No. 6, 16 p. (2015). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{K. Raj} et al., Aust. J. Math. Anal. Appl. 12, No. 1, Article No. 6, 16 p. (2015; Zbl 1339.46006) Full Text: Link
Yang, Xiuzhong; Chang, Lidan; Liu, Guofen; Shen, Guannan Stability of functional equations in \((n,\beta)\)-normed spaces. (English) Zbl 1309.39022 J. Inequal. Appl. 2015, Paper No. 112, 18 p. (2015). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{X. Yang} et al., J. Inequal. Appl. 2015, Paper No. 112, 18 p. (2015; Zbl 1309.39022) Full Text: DOI
Konca, Şükran; Gunawan, Hendra; Başarir, Metin Some remarks on \(\ell^p\) as an \(n\)-normed space. (English) Zbl 06668855 Math. Sci. Appl. E-Notes 2, No. 2, 45-50 (2014). MSC: 46B99 46B45 PDF BibTeX XML Cite \textit{Ş. Konca} et al., Math. Sci. Appl. E-Notes 2, No. 2, 45--50 (2014; Zbl 06668855) Full Text: Link
Mohiuddine, Syed Abdul; Raj, Kuldip; Alotaibi, Abdullah Generalized spaces of double sequences for Orlicz functions and bounded-regular matrices over \(n\)-normed spaces. (English) Zbl 1338.46007 J. Inequal. Appl. 2014, Paper No. 332, 16 p. (2014). MSC: 46A45 40B05 40J05 PDF BibTeX XML Cite \textit{S. A. Mohiuddine} et al., J. Inequal. Appl. 2014, Paper No. 332, 16 p. (2014; Zbl 1338.46007) Full Text: DOI
Raj, Kuldip; Sharma, Sunil K.; Sharma, Ajay K. Some double sequence spaces defined by a sequence of Orlicz functions over \(n\)-normed spaces. (English) Zbl 1338.46009 Sci. Math. Jpn. 77, No. 1, 69-81 (2014). MSC: 46A45 40J05 40B05 PDF BibTeX XML Cite \textit{K. Raj} et al., Sci. Math. Jpn. 77, No. 1, 69--81 (2014; Zbl 1338.46009) Full Text: Link
Raj, Kuldip; Sharma, Sunil K. Ideal convergent sequence spaces defined by Musielak-Orlicz function over \(n\)-normed spaces. (English) Zbl 1340.46013 Acta Univ. Apulensis, Math. Inform. 37, 233-244 (2014). MSC: 46A45 40A05 40A35 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Acta Univ. Apulensis, Math. Inform. 37, 233--244 (2014; Zbl 1340.46013)
Raj, Kuldip; Sharma, Sunil K. Some multiplier sequence spaces over \(n\)-normed spaces defined by a Musielak-Orlicz function. (English) Zbl 1324.46022 Serdica Math. J. 40, No. 1, 19-40 (2014). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Serdica Math. J. 40, No. 1, 19--40 (2014; Zbl 1324.46022)
Altundağ, Selma; Kamber, Esra Lacunary \(\delta\)-statistical convergence in intuitionistic fuzzy \(n\)-normed space. (English) Zbl 1310.40006 J. Inequal. Appl. 2014, Paper No. 40, 12 p. (2014). MSC: 40G15 40A35 40J05 46S40 PDF BibTeX XML Cite \textit{S. Altundağ} and \textit{E. Kamber}, J. Inequal. Appl. 2014, Paper No. 40, 12 p. (2014; Zbl 1310.40006) Full Text: DOI
Alotaibi, Abdullah; Mursaleen, Mohammad; Sharma, Sunil K. Double sequence spaces over \(n\)-normed spaces defined by a sequence of Orlicz functions. (English) Zbl 1321.46005 J. Inequal. Appl. 2014, Paper No. 216, 12 p. (2014). MSC: 46A45 40A05 PDF BibTeX XML Cite \textit{A. Alotaibi} et al., J. Inequal. Appl. 2014, Paper No. 216, 12 p. (2014; Zbl 1321.46005) Full Text: DOI
Lassak, Marek; Martini, Horst Reduced convex bodies in finite dimensional normed spaces: a survey. (English) Zbl 1310.52004 Result. Math. 66, No. 3-4, 405-426 (2014). MSC: 52A21 46B20 51M25 52A10 52A20 52A40 52B11 PDF BibTeX XML Cite \textit{M. Lassak} and \textit{H. Martini}, Result. Math. 66, No. 3--4, 405--426 (2014; Zbl 1310.52004) Full Text: DOI
Raj, Kuldip; Pandoh, Suruchi On some Zweier ideal convergent sequence spaces. (English) Zbl 1320.46006 Proc. Jangjeon Math. Soc. 17, No. 4, 567-588 (2014). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. Pandoh}, Proc. Jangjeon Math. Soc. 17, No. 4, 567--588 (2014; Zbl 1320.46006)
Debnath, Pradip; Sen, Mausumi Some results of calculus for functions having values in an intuitionistic fuzzy \(n\)-normed linear space. (English) Zbl 1307.26046 J. Intell. Fuzzy Syst. 26, No. 6, 2983-2991 (2014). MSC: 26E50 26A42 46S40 PDF BibTeX XML Cite \textit{P. Debnath} and \textit{M. Sen}, J. Intell. Fuzzy Syst. 26, No. 6, 2983--2991 (2014; Zbl 1307.26046) Full Text: DOI
Debnath, Pradip; Sen, Mausumi Some completeness results in terms of infinite series and quotient spaces in intuitionistic fuzzy \(n\)-normed linear spaces. (English) Zbl 1305.40013 J. Intell. Fuzzy Syst. 26, No. 2, 975-982 (2014). MSC: 40J05 40A05 46S40 PDF BibTeX XML Cite \textit{P. Debnath} and \textit{M. Sen}, J. Intell. Fuzzy Syst. 26, No. 2, 975--982 (2014; Zbl 1305.40013) Full Text: DOI
Raj, K.; Sharma, S. K. Some multiplier generalized difference sequence spaces over \(n\)-normed spaces defined by a Musielak-Orlicz function. (English) Zbl 1320.46005 Sib. Adv. Math. 24, No. 3, 193-203 (2014). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Sib. Adv. Math. 24, No. 3, 193--203 (2014; Zbl 1320.46005) Full Text: DOI
Liang, Xiaobin; Xie, Xinhua On the representation of linear isometries between the \(E^A_{(n)}\) type real spaces. (Chinese. English summary) Zbl 1313.46024 Pure Appl. Math. 30, No. 2, 143-148 (2014). MSC: 46B20 46B04 PDF BibTeX XML Cite \textit{X. Liang} and \textit{X. Xie}, Pure Appl. Math. 30, No. 2, 143--148 (2014; Zbl 1313.46024) Full Text: DOI
Raj, Kuldip; Sharma, Sunil K. Double sequence spaces over \(n\)-normed spaces. (English) Zbl 1340.46012 Arch. Math., Brno 50, No. 2, 65-76 (2014). Reviewer: Ondřej Došlý (Brno) MSC: 46A45 40A05 40C05 40D05 40B05 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Arch. Math., Brno 50, No. 2, 65--76 (2014; Zbl 1340.46012) Full Text: DOI
Samanta, Upasana; Bag, T. Completeness and compactness of finite dimensional fuzzy \(n\)-normed linear spaces. (English) Zbl 1318.46060 Ann. Fuzzy Math. Inform. 7, No. 5, 837-850 (2014). MSC: 46S40 54A40 PDF BibTeX XML Cite \textit{U. Samanta} and \textit{T. Bag}, Ann. Fuzzy Math. Inform. 7, No. 5, 837--850 (2014; Zbl 1318.46060) Full Text: Link
Rano, G.; Bag, T.; Samanta, S. K. Some geometric properties of generating spaces of semi-norm family. (English) Zbl 1318.46059 Ann. Fuzzy Math. Inform. 7, No. 5, 817-828 (2014). MSC: 46S40 46B20 PDF BibTeX XML Cite \textit{G. Rano} et al., Ann. Fuzzy Math. Inform. 7, No. 5, 817--828 (2014; Zbl 1318.46059) Full Text: Link
Kobos, Tomasz Equilateral dimension of certain classes of normed spaces. (English) Zbl 1315.46021 Numer. Funct. Anal. Optim. 35, No. 10, 1340-1358 (2014). Reviewer: Pawel Kolwicz (Poznań) MSC: 46B20 52C17 52A15 PDF BibTeX XML Cite \textit{T. Kobos}, Numer. Funct. Anal. Optim. 35, No. 10, 1340--1358 (2014; Zbl 1315.46021) Full Text: DOI arXiv
Chang, Lifang; Song, Meimei The Aleksandrov problem in 2-fuzzy n-normed linear spaces. (English) Zbl 1405.46057 Nonlinear Funct. Anal. Appl. 19, No. 2, 271-284 (2014). MSC: 46S40 46B04 46B20 PDF BibTeX XML Cite \textit{L. Chang} and \textit{M. Song}, Nonlinear Funct. Anal. Appl. 19, No. 2, 271--284 (2014; Zbl 1405.46057)
Fresen, Daniel J. Explicit Euclidean embeddings in permutation invariant normed spaces. (English) Zbl 1314.46016 Adv. Math. 266, 1-16 (2014). MSC: 46B07 52A21 PDF BibTeX XML Cite \textit{D. J. Fresen}, Adv. Math. 266, 1--16 (2014; Zbl 1314.46016) Full Text: DOI arXiv
Martini, Horst; Papini, Pier Luigi; Spirova, Margarita Complete sets and completion of sets in Banach spaces. (English) Zbl 1311.46015 Monatsh. Math. 174, No. 4, 587-597 (2014). MSC: 46B20 46B99 52A05 52A20 52A21 PDF BibTeX XML Cite \textit{H. Martini} et al., Monatsh. Math. 174, No. 4, 587--597 (2014; Zbl 1311.46015) Full Text: DOI arXiv
Ma, Yumei Isometry on linear \(n\)-normed spaces. (English) Zbl 1310.46013 Ann. Acad. Sci. Fenn., Math. 39, No. 2, 973-981 (2014). MSC: 46B04 46B20 51K05 PDF BibTeX XML Cite \textit{Y. Ma}, Ann. Acad. Sci. Fenn., Math. 39, No. 2, 973--981 (2014; Zbl 1310.46013) Full Text: DOI
Rassias, John Michael; Kim, Hark-Mahn Approximate \((m,n)\)-Cauchy-Jensen mappings in quasi-\(\beta\)-normed spaces. (English) Zbl 1297.39035 J. Comput. Anal. Appl. 16, No. 2, 346-358 (2014). Reviewer: Prasanna Sahoo (Louisville) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{J. M. Rassias} and \textit{H.-M. Kim}, J. Comput. Anal. Appl. 16, No. 2, 346--358 (2014; Zbl 1297.39035)
Park, Choonkil; Alaca, Cihangir A new version of Mazur-Ulam theorem under weaker conditions in linear \(n\)-normed spaces. (English) Zbl 1308.46017 J. Comput. Anal. Appl. 16, No. 5, 827-832 (2014). MSC: 46B04 PDF BibTeX XML Cite \textit{C. Park} and \textit{C. Alaca}, J. Comput. Anal. Appl. 16, No. 5, 827--832 (2014; Zbl 1308.46017)
Sharma, Sunil K.; Raj, Kuldip; Sharma, Ajay K. Some double sequence spaces in \(n\)-normed spaces using ideal convergence and a sequence of Orlicz functions. (English) Zbl 1412.46015 J. Nonlinear Anal. Optim. 4, No. 1, 1-11 (2013). MSC: 46A45 40A35 40J05 PDF BibTeX XML Cite \textit{S. K. Sharma} et al., J. Nonlinear Anal. Optim. 4, No. 1, 1--11 (2013; Zbl 1412.46015) Full Text: Link
Sahiner, Ahmet; Yigit, Tuba Fixed point theorems in \(p\)-summable symmetric \(n\)-cone normed sequence spaces. (English) Zbl 1322.47054 TWMS J. Appl. Eng. Math. 3, No. 2, 198-205 (2013). Reviewer: Zoran Kadelburg (Beograd) MSC: 47H10 46A19 46B45 PDF BibTeX XML Cite \textit{A. Sahiner} and \textit{T. Yigit}, TWMS J. Appl. Eng. Math. 3, No. 2, 198--205 (2013; Zbl 1322.47054)
Esi, Ayhan; Özdemir, M. Kemal On lacunary statistical convergence in random \(n\)-normed space. (English) Zbl 1302.40006 Ann. Fuzzy Math. Inform. 5, No. 2, 429-439 (2013). MSC: 40A35 46A70 PDF BibTeX XML Cite \textit{A. Esi} and \textit{M. K. Özdemir}, Ann. Fuzzy Math. Inform. 5, No. 2, 429--439 (2013; Zbl 1302.40006) Full Text: Link
Sarma, Bipul Double sequence spaces defined over an \(n\)-normed sequence space. (English) Zbl 1308.46011 Afr. Mat. 24, No. 4, 683-689 (2013). MSC: 46A45 PDF BibTeX XML Cite \textit{B. Sarma}, Afr. Mat. 24, No. 4, 683--689 (2013; Zbl 1308.46011) Full Text: DOI
Kristiantoo, Tyas Rangga; Wibawa-Kusumah, Raden Akbar; Gunawan, Hendra Equivalence relations of \(n\)-norms on a vector space. (English) Zbl 1299.46013 Mat. Vesn. 65, No. 4, 488-493 (2013). Reviewer: Zoran Kadelburg (Beograd) MSC: 46A70 PDF BibTeX XML Cite \textit{T. R. Kristiantoo} et al., Mat. Vesn. 65, No. 4, 488--493 (2013; Zbl 1299.46013)
Jin, Sun-Sook; Lee, Yang-Hi Fuzzy stability of an \(n\)-dimensional quadratic and additive type functional equation. (English) Zbl 1290.39019 Int. J. Math. Anal., Ruse 7, No. 29-32, 1513-1530 (2013). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 46S40 39B52 PDF BibTeX XML Cite \textit{S.-S. Jin} and \textit{Y.-H. Lee}, Int. J. Math. Anal., Ruse 7, No. 29--32, 1513--1530 (2013; Zbl 1290.39019) Full Text: DOI
Pangalela, Yosafat E. P.; Gunawan, Hendra The \(n\)-dual space of the space of \(p\)-summable sequences. (English) Zbl 1289.46039 Math. Bohem. 138, No. 4, 439-448 (2013). MSC: 46B99 46C99 46B10 PDF BibTeX XML Cite \textit{Y. E. P. Pangalela} and \textit{H. Gunawan}, Math. Bohem. 138, No. 4, 439--448 (2013; Zbl 1289.46039) Full Text: Link
Esi, Ayhan; Özdemir, M. Kemal \(\Lambda \)-strongly summable sequence spaces in \(n\)-normed spaces defined by ideal convergence and an Orlicz function. (English) Zbl 1340.46005 Math. Slovaca 63, No. 4, 829-838 (2013). Reviewer: M. Mursaleen (Aligarh) MSC: 46A45 PDF BibTeX XML Cite \textit{A. Esi} and \textit{M. K. Özdemir}, Math. Slovaca 63, No. 4, 829--838 (2013; Zbl 1340.46005) Full Text: DOI
Chu, Hahng-Yun; Ku, Se-Hyun A Mazur-Ulam problem in non-Archimedean \(n\)-normed spaces. (English) Zbl 1297.46055 J. Inequal. Appl. 2013, Paper No. 34, 10 p. (2013). MSC: 46S10 46B20 51M25 PDF BibTeX XML Cite \textit{H.-Y. Chu} and \textit{S.-H. Ku}, J. Inequal. Appl. 2013, Paper No. 34, 10 p. (2013; Zbl 1297.46055) Full Text: DOI arXiv
Raj, Kuldip; Sharma, Sunil K. Some new sequence spaces. (English) Zbl 1290.46005 Appl. Appl. Math. 8, No. 2, 596-613 (2013). MSC: 46A45 PDF BibTeX XML Cite \textit{K. Raj} and \textit{S. K. Sharma}, Appl. Appl. Math. 8, No. 2, 596--613 (2013; Zbl 1290.46005) Full Text: Link
Sharma, S. K.; Esi, Ayhan Some \(\mathcal{I}\)-convergent sequence spaces defined by using sequence of moduli and \(n\)-normed space. (English) Zbl 1290.46006 J. Egypt. Math. Soc. 21, No. 2, 103-107 (2013). MSC: 46A45 PDF BibTeX XML Cite \textit{S. K. Sharma} and \textit{A. Esi}, J. Egypt. Math. Soc. 21, No. 2, 103--107 (2013; Zbl 1290.46006) Full Text: DOI