×

The filtered Poincaré Lemma in higher level (with applications to algebraic groups). (English) Zbl 1184.14032

Authors’ abstract: We show that the Poincaré lemma we proved elsewhere in the context of crystalline cohomology of higher level behaves well with regard to the Hodge filtration. This allows us to prove the Poincaré lemma for transversal crystals of level \(m\). We interpret the de Rham complex in terms of what we call the Berthelot-Lieberman construction and show how the same construction can be used to study the conormal complex and invariant differential forms of higher level for a group scheme. Bringing together both instances of the construction, we show that crystalline extensions of transversal crystals by algebraic groups can be computed by reduction to the filtered de Rham complexes. Our theory does not ignore torsion and, unlike in the classical case (\(m = 0\)), not all invariant forms are closed. Therefore, closed invariant differential forms of level \(m\) provide new invariants and we exhibit some examples as applications.

MSC:

14F30 \(p\)-adic cohomology, crystalline cohomology
14F40 de Rham cohomology and algebraic geometry
14L15 Group schemes
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] P. Berthelot, Cohomologie crystalline des schémas de caractéristique \(p>0\), Lecture Notes in Mathematics, vol. 407, Springer-Verlag, Berlin, 1974. · Zbl 0298.14012
[2] P. Berthelot, \(\mathcalD\)-modules arithmétiques I. Opérateurs différentiels de niveau fini , Ann. Sci. École Norm. Sup. (4), 29 (1996), 185–272. · Zbl 0886.14004
[3] P. Berthelot, L. Breen and W. Messing, Théorie de Dieudonné crystalline II, Lecture Notes in Mathematics, vol. 930, Springer-Verlag, Berlin, 1982. · Zbl 0516.14015
[4] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton University Press, 1978. · Zbl 0383.14010
[5] R. Crew, Crystalline cohomology of singular varieties , Geometric aspects of Dwork theory. Vol. I, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 451–462. · Zbl 1084.14511
[6] P. Deligne, Théorie de Hodge II , Inst. Hautes Études Sci. Publ. Math., (40) (1971), 5–57. · Zbl 0219.14007 · doi:10.1007/BF02684692
[7] J.-Y. Étesse and B. Le Stum, Fonctions \(L\) associées aux \(F\)-isocristaux surconvergents. II. Zéros et pôles unités, Invent. Math., 127 (1997), 1–31. · Zbl 0911.14011 · doi:10.1007/s002220050112
[8] L. Illusie, Complexe cotangent et déformations I, Lecture Notes in Mathematics, vol. 239, Springer-Verlag, Berlin, 1971. · Zbl 0224.13014 · doi:10.1007/BFb0059052
[9] B. Le Stum and A. Quirós, Transversal crystals of finite level , Ann. Inst. Fourier, 47 (1997), 69–100. · Zbl 0883.14006 · doi:10.5802/aif.1560
[10] B. Le Stum and A. Quirós, The exact Poincaré lemma in crystalline cohomology of higher level , J. Algebra, 240 (2001), 559–588. · Zbl 1064.14015 · doi:10.1006/jabr.2001.8749
[11] A. Ogus, \(F\) -crystals, Griffiths transversality, and the Hodge decomposition, Astérisque, 221 (1994). · Zbl 0801.14004
[12] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. · Zbl 0585.14026
[13] F. Trihan, Fonction \(L\) unité d’un groupe de Barsotti-Tate, Manuscripta Math., 96 (1998), 397–419. · Zbl 0968.14007 · doi:10.1007/s002290050074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.