×

Entanglement entropy and the colored Jones polynomial. (English) Zbl 1391.81177

Summary: We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient \(S^3\) separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure – i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement – i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified \(\mathrm{SL}\left(2, \mathbb{C}\right)\) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.

MSC:

81T45 Topological field theories in quantum mechanics
81P40 Quantum coherence, entanglement, quantum correlations
58J28 Eta-invariants, Chern-Simons invariants
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C80 Analogues of general relativity in lower dimensions

Software:

SnapPy
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Dur, W.; Vidal, G.; Cirac, JI, Three qubits can be entangled in two inequivalent ways, Phys. Rev., A 62, (2000)
[2] F. Verstraete, J. Dehaene, B. de Moor and H. Verschelde, Four qubits can be entangled in nine different ways, Phys. Rev.A 65 (2002) 052112 [quant-ph/0109033].
[3] Balasubramanian, V.; Hayden, P.; Maloney, A.; Marolf, D.; Ross, SF, Multiboundary wormholes and holographic entanglement, Class. Quant. Grav., 31, 185015, (2014) · Zbl 1300.81067
[4] Marolf, D.; Maxfield, H.; Peach, A.; Ross, SF, Hot multiboundary wormholes from bipartite entanglement, Class. Quant. Grav., 32, 215006, (2015) · Zbl 1329.83063
[5] Peach, A.; Ross, SF, Tensor network models of multiboundary wormholes, Class. Quant. Grav., 34, 105011, (2017) · Zbl 1369.83097
[6] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602, (2006) · Zbl 1228.83110
[7] Witten, E., Topological quantum field theory, Commun. Math. Phys., 117, 353, (1988) · Zbl 0656.53078
[8] Atiyah, M., Topological quantum field theories, Publ. Math. Inst. Hautes Études Sci., 68, 175, (1988) · Zbl 0692.53053
[9] Balasubramanian, V.; Fliss, JR; Leigh, RG; Parrikar, O., Multi-boundary entanglement in Chern-Simons theory and link invariants, JHEP, 04, 061, (2017) · Zbl 1378.81061
[10] Salton, G.; Swingle, B.; Walter, M., Entanglement from topology in Chern-Simons theory, Phys. Rev., D 95, 105007, (2017)
[11] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 351, (1989) · Zbl 0667.57005
[12] Dwivedi, S.; Singh, VK; Dhara, S.; Ramadevi, P.; Zhou, Y.; Joshi, LK, Entanglement on linked boundaries in Chern-Simons theory with generic gauge groups, JHEP, 02, 163, (2018) · Zbl 1387.58029
[13] S. Chun and N. Bao, Entanglement entropy from SU(2) Chern-Simons theory and symmetric webs, arXiv:1707.03525 [INSPIRE].
[14] D. Gottesman, Stabilizer codes and quantum error correction, quant-ph/9705052 [INSPIRE]. · Zbl 0876.57007
[15] D. Gross, Hudson’s theorem for finite-dimensional quantum systems, J. Math. Phys.47 (2006) 122107 [quant-ph/0602001]. · Zbl 1112.81012
[16] A. Klappenecker and M. Roetteler, Beyond stabilizer codes I: nice error bases, quant-ph/0010082.
[17] A. Klappenecker and M. Roetteler, Beyond stabilizer codes II: Clifford codes, quant-ph/0010076.
[18] E. Knill, Group representations, error bases and quantum codes, quant-ph/9608049 [INSPIRE]. · Zbl 1337.81106
[19] N. Linden, F. Matúš, M.B. Ruskai and A. Winter, The quantum entropy cone of stabiliser states, arXiv:1302.5453. · Zbl 1356.81102
[20] D. Fattal, T.S. Cubitt, Y. Yamamoto, S. Bravyi and I.L. Chuang, Entanglement in the stabilizer formalism, quant-ph/0406168. · Zbl 1115.57009
[21] M. Hein et al., Entanglement in graph states and its applications, quant-ph/0602096. · Zbl 0717.53074
[22] M. Hein, J. Eisert and H.J. Briegel, Multiparty entanglement in graph states, Phys. Rev.A 69 (2004) 062311 [quant-ph/0307130]. · Zbl 1232.81007
[23] D. Schlingemann, Cluster states, algorithms and graphs, quant-ph/0305170. · Zbl 1175.81076
[24] Chen, L.; Zhou, DL, Graph states of prime-power dimension from generalized CNOT quantum circuit, Sci. Rept., 6, 27135, (2016)
[25] Tang, W.; Yu, S.; Oh, CH, Greenberger-Horne-Zeilinger paradoxes from qudit graph states, Phys. Rev. Lett., 110, 100403, (2013)
[26] Verlinde, EP, fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys., B 300, 360, (1988) · Zbl 1180.81120
[27] Nozaki, M.; Ryu, S.; Takayanagi, T., Holographic geometry of entanglement renormalization in quantum field theories, JHEP, 10, 193, (2012) · Zbl 1397.81046
[28] Pastawski, F.; Yoshida, B.; Harlow, D.; Preskill, J., Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP, 06, 149, (2015) · Zbl 1388.81094
[29] Menasco, W., Closed incompressible surfaces in alternating knot and link complements, Topology, 23, 37, (1984) · Zbl 0525.57003
[30] Steinhoff, FES; Ritz, C.; Miklin, NI; Gühne, O., Qudit hypergraph states, Phys. Rev., A 95, (2017)
[31] Isidro, JM; Labastida, JMF; Ramallo, AV, Polynomials for torus links from Chern-Simons gauge theories, Nucl. Phys., B 398, 187, (1993)
[32] Labastida, JMF; Mariño, M.; Vafa, C., Knots, links and branes at large N, JHEP, 11, 007, (2000) · Zbl 0990.81545
[33] Brini, A.; Eynard, B.; Mariño, M., Torus knots and mirror symmetry, Annales Henri Poincaré, 13, 1873, (2012) · Zbl 1256.81086
[34] Kaul, RK, Chern-Simons theory, colored oriented braids and link invariants, Commun. Math. Phys., 162, 289, (1994) · Zbl 0832.57006
[35] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett.77 (1996) 1413 [quant-ph/9604005] [INSPIRE]. · Zbl 0947.81003
[36] Vidal, G.; Werner, RF, Computable measure of entanglement, Phys. Rev., A 65, (2002)
[37] Rangamani, M.; Rota, M., Entanglement structures in qubit systems, J. Phys., A 48, 385301, (2015) · Zbl 1327.81063
[38] M. Culler, N.M. Dunfield, M. Goerner and J.R. Weeks, SnapPy, a computer program for studying the geometry and topology of 3-manifolds, available at http://snappy.computop.org, 1 June 2017.
[39] Witten, E., Quantization of Chern-Simons gauge theory with complex gauge group, Commun. Math. Phys., 137, 29, (1991) · Zbl 0717.53074
[40] Gukov, S., Three-dimensional quantum gravity, Chern-Simons theory and the A polynomial, Commun. Math. Phys., 255, 577, (2005) · Zbl 1115.57009
[41] Dimofte, T.; Gukov, S.; Lenells, J.; Zagier, D., Exact results for perturbative Chern-Simons theory with complex gauge group, Commun. Num. Theor. Phys., 3, 363, (2009) · Zbl 1214.81151
[42] Witten, E., Analytic continuation of Chern-Simons theory, AMS/IP Stud. Adv. Math., 50, 347, (2011) · Zbl 1337.81106
[43] Dimofte, T., Perturbative and nonperturbative aspects of complex Chern-Simons theory, J. Phys., A 50, 443009, (2017) · Zbl 1386.81121
[44] W.P. Thurston, Three-dimensional geometry and topology, volume 1, Princeton University Press, Princeton U.S.A., (1997). · Zbl 0873.57001
[45] J. Purcell, Notes on hyperbolic knot theory, http://users.monash.edu/∼jpurcell/hypknottheory.html. · Zbl 1387.58029
[46] J. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, Springer, New York U.S.A., (2006). · Zbl 1106.51009
[47] Kashaev, RM, The hyperbolic volume of knots from quantum dilogarithm, Lett. Math. Phys., 39, 269, (1997) · Zbl 0876.57007
[48] H. Murakami and J. Murakami, The colored Jones polynomials and the simplicial volume of a knot, math.GT/9905075. · Zbl 0983.57009
[49] Dimofte, T.; Gukov, S., Quantum field theory and the volume conjecture, Contemp. Math., 541, 41, (2011) · Zbl 1236.57001
[50] N.M. Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math.136 (1999) 623 [math.GT/9802022]. · Zbl 0928.57012
[51] Neumann, WD; Zagier, D., Volumes of hyperbolic three-manifolds, Topology, 24, 307, (1985) · Zbl 0589.57015
[52] Aaber, JW; Dunfield, N., Closed surface bundles of least volume, Alg. Geom. Topol., 10, 2315, (2010) · Zbl 1205.57018
[53] Stanford, D.; Susskind, L., Complexity and shock wave geometries, Phys. Rev., D 90, 126007, (2014)
[54] K. Hikami, Generalized volume conjecture and the A-polynomials: the Neumann-Zagier potential function as a classical limit of quantum invariant, J. Geom. Phys.57 (2007) 1895 [math.QA/0604094] [INSPIRE]. · Zbl 1139.57013
[55] Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys., 3, 1415, (1999) · Zbl 0972.81135
[56] B. Apanasov, W. Neumann, A. Reid and L. Siebenmann, Topology\^{}{′}90, Ohio State University Mathematical Research Institute Publications, De Gruyter, Germany, (1992). · Zbl 1300.81067
[57] H.S. Tan, Topological entanglement entropy and braids in Chern-Simons theory, arXiv:1707.06629 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.