Juhász, István; Weiss, William On the tightness of chain-net spaces. (English) Zbl 0602.54004 Commentat. Math. Univ. Carol. 27, 677-681 (1986). We give a general construction that yields (in ZFC) (1) a 0-dimensional \(T_ 2\) chain net space of countable tightness that is not sequential; (2) a 0-dimensional \(T_ 2\) chain net space X for which \(t(X)\neq t_ s(X)\). (1) answers a problem of A. V. Arkhangel’skij [Usp. Mat. Nauk 33, No.6(204), 29-84 (1978; Zbl 0414.54002)] and (2) a problem of A. V. Arkhangel’skij, R. Isler and G. Tironi [Commentat. Math. Univ. Carol. 27, 137-154 (1986; Zbl 0587.54007]. Cited in 2 Documents MSC: 54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets) 54A20 Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.) Keywords:sequential space; 0-dimensional \(T_ 2\) chain net space; countable tightness Citations:Zbl 0414.54002; Zbl 0587.54007 PDF BibTeX XML Cite \textit{I. Juhász} and \textit{W. Weiss}, Commentat. Math. Univ. Carol. 27, 677--681 (1986; Zbl 0602.54004) Full Text: EuDML