# zbMATH — the first resource for mathematics

A one-dimensional full-range two-phase model to efficiently compute bifurcation diagrams in sub-cooled boiling flows in vertical heated tube. (English) Zbl 1453.65440
Summary: This paper presents a powerful numerical model to compute bifurcation diagrams in liquid-vapor two-phase fluid flows in vertical heated tube. This full range two-phase model is designed to deal with both single phase (purely liquid or purely vapor) and mixed liquid-vapor configurations that span all flow regimes (laminar and turbulent) in forced, mixed and natural convections. The originality of the proposed methodology is to faithfully integrate the implicit highly nonlinear system of governing equations along branches of steady-state solutions. This is performed by means of a continuation algorithm based on the Asymptotic Numerical Method supplemented with Automatic Differentiation. Then, linear stability analyses are performed at various points of interest, enabling to figure out stability limits within the parameter space in natural circulation configurations. Markedly, Hopf bifurcations that indicate limit-cycle occurrences are identified at low and medium void fractions, respectively, showing the added-value of the approach to track density-wave mechanisms and potential failure of standard application of Ledinegg stability criteria on such cases.
##### MSC:
 65P30 Numerical bifurcation problems 76T10 Liquid-gas two-phase flows, bubbly flows 37N10 Dynamical systems in fluid mechanics, oceanography and meteorology 37M20 Computational methods for bifurcation problems in dynamical systems
##### Software:
JDQR; JDQZ; Matlab; Diamanlab; Mathematica
Full Text:
##### References:
 [1] Achard, J.; Drew, D. A.; Lahey, R. T., The analysis of nonlinear density-wave oscillations in boiling channels, J. Fluid Mech., 155, 213-232 (1985) · Zbl 0585.76064 [2] Allgower, E. L.; Georg, K., Continuation an path following, Acta Numer., 2, 1-64 (1993) · Zbl 0792.65034 [3] Alpy, N.; Marsault, P.; Anderhuber, M.; Gerschenfeld, A.; Sciora, P.; Kadri, D.; Perez, J.; Lavastre, R., Phenomenological investigation of sodium boiling in a SFR core during a postulated ULOF transient with CATHARE 2 system code: a stabilized boiling case, J. Nucl. Sci. Technol., 53, 692-697 (2016) [4] Bouré, J. A.; Bergles, A. E.; Tong, L. S., Review of two-phase flow instability, Nucl. Eng. Des., 25, 162-192 (1973) [5] Charpentier, I.; Cochelin, B.; Lampoh, K., Diamanlab – an interactive Taylor-based continuation tool in Matlab [6] Charpentier, I.; Cochelin, B., Towards a full higher order AD-based continuation and bifurcation framework friction, Optim. Methods Softw., 1-18 (2018) [7] Churchill, S. W., Friction factor equation spans all fluid-flow regimes, Chem. Eng., 84, 91-92 (1977) [8] Cliffe, K. A.; Garratt, T. J.; Spence, A., Eigenvalues of the discretized Navier-Stokes equation with application to the detection of Hopf bifurcations, Adv. Comput. Math., 1, 337-356 (1993) · Zbl 0830.76048 [9] Cliffe, K. A.; Garratt, T. J.; Spence, A., Eigenvalues of block matrices arising from problems in fluid mechanics, SIAM J. Matrix Anal. Appl., 15, 1310-1318 (1994) · Zbl 0807.65030 [10] Cliffe, K. A.; Spence, A.; Tavener, S. J., The numerical analysis of bifurcation problems with application to fluid mechanics, Acta Numer., 9, 39-131 (2000), 2008 · Zbl 1005.65138 [11] Cochelin, B., A path following technique via an asymptotic numerical method, Comput. Struct., 53, 1181-1192 (1994) · Zbl 0918.73337 [12] Cochelin, B.; Damil, N.; Potier-Ferry, M., Méthode Asymptotique Numérique (2007), Hermès - Lavoisier, (in french) · Zbl 1135.65035 [13] Cochelin, B.; Medale, M., Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations, J. Comput. Phys., 236, 594-607 (2013) [14] Dijkstra, H. A.; Wubs, F. W.; Cliffe, A. K.; Doedel, E.; Dragomirescu, I. F.; Eckhardt, B.; Gelfgat, A. Y.; Hazel, A. L.; Lucarini, V.; Salinger, A. G.; Phipps, E. T.; Sanchez-Umbria, J.; Schuttelaars, H.; Tuckerman, L. S.; Thiele, U., Numerical bifurcation methods and their application to fluid dynamics: analysis beyond simulation, Commun. Comput. Phys., 15, 1-45 (2014) · Zbl 1373.76026 [15] Doedel, E.; Keller, H. B.; Kernevez, J. P., Numerical analysis and control of bifurcation problems (i) bifurcation in finite dimensions, Int. J. Bifurc. Chaos, 3, 493-520 (1991) · Zbl 0876.65032 [16] Doedel, E., Nonlinear numerics, J. Franklin Inst., 334B, 1049-1073 (1997) · Zbl 0887.65052 [17] Doedel, E., Lecture notes on numerical analysis of nonlinear equations, (Krauskopf, B.; Osinga, H.; Galan-Vioque, J., Numerical Continuation Methods for Dynamical Systems (2007), Springer), 1-49 · Zbl 1130.65119 [18] Dokhane, A.; Hennig, D.; Chawla, R.; Rizwan-Uddin, Semi-analytical bifurcation analysis of two-phase flow in a heated channel, Int. J. Bifurc. Chaos, 15, 8, 2395-2409 (2005) · Zbl 1092.37533 [19] Draizin, P. G.; Reid, W. H., Hydrodynamic Stability (1981), Cambridge University Press [20] Fokkema, D. R.; Sleijpen, G. L.G.; van der Vorst, H. A., Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20, 1, 94-125 (1998) · Zbl 0924.65027 [21] Fukuda, K.; Kobori, T., Classification of two-phase flow instability by density wave oscillation model, J. Nucl. Sci. Technol., 16, 2, 95-108 (1979) [22] Griewank, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Frontiers in Applied Mathematics (2000), SIAM: SIAM Philadelphia · Zbl 0958.65028 [23] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043 [24] Hibiki, T.; Ishii, M., One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, Int. J. Heat Mass Transf., 46, 25, 4935-4948 (2003) · Zbl 1052.76070 [25] Hibiki, T.; Ishii, M., Erratum to: “One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes”, Int. J. Heat Mass Transf.. Int. J. Heat Mass Transf., Int. J. Heat Mass Transf., 48, 6, 1222-1223 (2005) · Zbl 1189.76629 [26] Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants, TECDOC Series, vol. 1624 (2009), International Atomic Energy Agency: International Atomic Energy Agency Vienna [27] Iooss, G.; Joseph, D. D., Elementary Stability and Bifurcation Theory (1981), Springer: Springer New York · Zbl 0512.58026 [28] Ishii, M., One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes (1977), Argonne National Lab. Ill. (USA), Technical Report ANL-77-47 [29] Keller, H. B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems (1977), Academic Press: Academic Press New York · Zbl 0581.65043 [30] Lahey, R. T.; Yadigaroglu, G., A Lagrangian analysis of two-phase hydrodynamic and nuclear-coupled density-wave oscillations, (Proceedings of the Fifth Int. Heat Transfer Conf.. Proceedings of the Fifth Int. Heat Transfer Conf., September 3-7, 1974, Tokyo, IV (1974)), Article B5.9.G pp. [31] Lange, C.; Hennig, D.; Hurtado, A., An advanced reduced order model for BWR stability analysis, Prog. Nucl. Energy, 53, 139-160 (2011) [32] Manneville, P., Structures dissipatives, chaos et turbulence, Alea Saclay (1991) · Zbl 0744.76068 [33] MATLAB®, Copyright 1984-2014, The MathWorks, Inc. [34] Medale, M.; Cochelin, B., High performance computations of steady-state bifurcations in 3D incompressible fluid flows by asymptotic numerical method, J. Comput. Phys., 299, 581-596 (2015) · Zbl 1351.76018 [35] Meerbergen, K.; Spence, A., Implicitly restarted Arnoldi with purification for Shift-Invert transformation, Math. Comput., 66, 667-689 (1997) · Zbl 0864.65020 [36] Moler, C. B.; Stewart, G. W., An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10, 241-256 (1973) · Zbl 0253.65019 [37] Muller-Steinhagen, H.; Heck, K., A simple friction pressure drop correlation for two-phase flow in pipes, Chem. Eng. Prog., 20, 297-308 (1986) [38] Nicolas, X.; Medale, M.; Glockner, S.; Gounand, S., Benchmark solution for a three-dimensional mixed-convection flow, Part: reference solutions, Numer. Heat Transf., Part B, Fundam., 60, 325-345 (2011) [39] Oberkampf, W. L.; Trucano, T., Verification, and validation in computational fluid dynamics, Prog. Aerosp. Sci., 38, 209-272 (2002) [40] Pandey, V.; Singh, S., Bifurcation analysis of density wave oscillations in natural circulation loop, Int. J. Therm. Sci., 120, 446-458 (2017) [41] Parisse, B.; De Graeve, R., Giac/Xcas, version 1.5.0 (2018) [42] Rizwan-Uddin; Dorning, J. J., Some nonlinear dynamics of a heated channel, Nucl. Eng. Des., 93, 1, 1-14 (1986) [43] Perspective, P. J. Roache, A method for uniform reporting of grid refinement studies, J. Fluids Eng., 116, 405-413 (1994) [44] Roy, C. J., Review of code and solution verification procedures for computational simulation, J. Comput. Phys., 205, 131-156 (2005) · Zbl 1072.65118 [45] Rommes, J., Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems $$A x = \lambda B x$$ with singular B, Math. Comput., 77, 262, 995-1015 (2008) · Zbl 1133.65020 [46] Ruspini, L. C.; Marcel, C. P.; Clausse, A., Two-phase flow instabilities: a review, Int. J. Heat Mass Transf., 71, 521-548 (2014) [47] Saha, P.; Zuber, N., An analytical study of the thermally induced two-phase flow instabilities including the effect of thermal non-equilibrium, Int. J. Heat Mass Transf., 21, 4, 415-426 (1978) · Zbl 0384.76073 [48] Seydel, R., Practical Bifurcation and Stability Analysis (1994), Springer-Verlag · Zbl 0806.34028 [49] Seydel, R., Nonlinear computation, J. Franklin Inst., 334B, 1015-1047 (1997) · Zbl 0886.34043 [50] Sonnenburg, H. G., Full-range drift-flux model based on the combination of drift-flux theory with envelope theory, (Int. NURETH-4 Conf.. Int. NURETH-4 Conf., Oct. 10-13, 1989, Karlsruhe (1989)), 1003-1009 [51] Sun, L.; Mishima, K., Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels, Int. J. Multiph. Flow, 35, 47-54 (2009) [52] Van Dyke, M., Analysis and improvement of perturbation series, J. Mech. Appl. Math., 27, 423-450 (1974) · Zbl 0295.65066 [53] Watkins, D. S., Performance of the QZ algorithm in the presence of infinite eigenvalues, SIAM J. Matrix Anal. Appl., 22, 364-375 (2000) · Zbl 0969.65029 [54] Wolfram Research (2018), Champaign: Champaign Illinois, Inc. Mathematica, Version 11.3 [55] Wallis, G. B.; Heasley, J. H., Oscillations in two-phase flow systems, Trans. ASME J. Heat Transf., 83C, 363-369 (1961) [56] Xu, A.; Wang, C., Some extensions of Faà di Bruno’s formula with divided differences, Comput. Math. Appl., 59, 6, 2047-2052 (2010) · Zbl 1189.05016 [57] Xu, Y.; Fang, X.; Su, X.; Zhou, Z.; Chen, W., Evaluation of frictional pressure drop correlations for two-phase flow in pipes, Nucl. Eng. Des., 253, 86-97 (2012) [58] Yi, P.; Yang, S.; Habchi, C.; Lugo, R., A multicomponent real-fluid fully compressible four-equation model for two-phase flow with phase-change, Phys. Fluids, 31, Article 026102 pp. (2019) [59] Zuber, N.; Findlay, J., Average volumetric concentration in two-phase flow system, J. Heat Transf., 87, 453-468 (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.