Sankeshwari, Sagar; Kulkarni, Vinayak Solutions of hyperbolic system of time fractional partial differential equations for heat propagation. (English) Zbl 07907433 Appl. Appl. Math. 19, No. 1, Paper No. 12, 20 p. (2024). MSC: 26A33 35L35 44A10 65R10 74F05 PDFBibTeX XMLCite \textit{S. Sankeshwari} and \textit{V. Kulkarni}, Appl. Appl. Math. 19, No. 1, Paper No. 12, 20 p. (2024; Zbl 07907433) Full Text: Link
Ganie, Abdul Hamid; Mallik, Saurav; AlBaidani, Mashael M.; Khan, Adnan; Shah, Mohd Asif Novel analysis of nonlinear seventh-order fractional Kaup-Kupershmidt equation via the Caputo operator. (English) Zbl 07897013 Bound. Value Probl. 2024, Paper No. 87, 20 p. (2024). MSC: 35R11 35A22 PDFBibTeX XMLCite \textit{A. H. Ganie} et al., Bound. Value Probl. 2024, Paper No. 87, 20 p. (2024; Zbl 07897013) Full Text: DOI OA License
Sahoo, Mrutyunjaya; Chakraverty, S. Influence of uncertain Coriolis parameter on wave solution of Korteweg-de Vries equation. (English) Zbl 07896986 GEM. Int. J. Geomath. 15, Paper No. 10, 22 p. (2024). MSC: 35Q53 35Q90 65M99 76B15 PDFBibTeX XMLCite \textit{M. Sahoo} and \textit{S. Chakraverty}, GEM. Int. J. Geomath. 15, Paper No. 10, 22 p. (2024; Zbl 07896986) Full Text: DOI
Manjare, N. B.; Jadhav, S. D. Approximate solution of fractional pantograph differential equations using Sumudu decomposition method. (English) Zbl 07892890 Gaṇita 74, No. 1, 55-71 (2024). MSC: 34A08 26A33 49M27 34A45 PDFBibTeX XMLCite \textit{N. B. Manjare} and \textit{S. D. Jadhav}, Gaṇita 74, No. 1, 55--71 (2024; Zbl 07892890) Full Text: Link
Alomari, Saleem Nasser; Hasan, Yahya Qaid An efficient and accurate modified Adomian decomposition method for solving the Helmholtz equation with high-wavenumber. (English) Zbl 07890971 Surv. Math. Appl. 19, 143-161 (2024). MSC: 35J05 PDFBibTeX XMLCite \textit{S. N. Alomari} and \textit{Y. Q. Hasan}, Surv. Math. Appl. 19, 143--161 (2024; Zbl 07890971) Full Text: Link
Ayari, M. Iadh; Thabet, Sabri T. M. Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator. (English) Zbl 07882349 Arab J. Math. Sci. 30, No. 2, 197-217 (2024). MSC: 34A08 34B15 65L10 PDFBibTeX XMLCite \textit{M. I. Ayari} and \textit{S. T. M. Thabet}, Arab J. Math. Sci. 30, No. 2, 197--217 (2024; Zbl 07882349) Full Text: DOI
Chauhan, Jignesh P.; Khirsariya, Sagar R.; Hathiwala, Gautam S.; Hathiwala, Minakshi Biswas New analytical technique to solve fractional-order Sharma-Tasso-Olver differential equation using Caputo and Atangana-Baleanu derivative operators. (English) Zbl 07867607 J. Appl. Anal. 30, No. 1, 1-16 (2024). MSC: 35R11 33E50 35Q51 PDFBibTeX XMLCite \textit{J. P. Chauhan} et al., J. Appl. Anal. 30, No. 1, 1--16 (2024; Zbl 07867607) Full Text: DOI
Wanassi, Om Kalthoum; Bourguiba, Rim; Torres, Delfim F. M. Existence and uniqueness of solution for fractional differential equations with integral boundary conditions and the Adomian decomposition method. (English) Zbl 07861214 Math. Methods Appl. Sci. 47, No. 5, 3582-3595 (2024). MSC: 65L05 65L70 34A08 26A33 34B10 PDFBibTeX XMLCite \textit{O. K. Wanassi} et al., Math. Methods Appl. Sci. 47, No. 5, 3582--3595 (2024; Zbl 07861214) Full Text: DOI OA License
Pavithra, C. G.; Gireesha, B. J.; Keerthi, M. L. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid. (English) Zbl 1537.76005 AMM, Appl. Math. Mech., Engl. Ed. 45, No. 1, 197-216 (2024). MSC: 76A05 76M99 PDFBibTeX XMLCite \textit{C. G. Pavithra} et al., AMM, Appl. Math. Mech., Engl. Ed. 45, No. 1, 197--216 (2024; Zbl 1537.76005) Full Text: DOI
Khater, Mostafa M. A.; Mohamed, Mohamed S.; Lu, Dianchen; Attia, Raghda A. M. On the phase separation in the ternary alloys: numerical and computational simulations of the Atangana-Baleanu time-fractional Cahn-Allen equation. (English) Zbl 1537.35385 Numer. Methods Partial Differ. Equations 40, No. 2, Article ID e22711, 19 p. (2024). MSC: 35R11 35C10 PDFBibTeX XMLCite \textit{M. M. A. Khater} et al., Numer. Methods Partial Differ. Equations 40, No. 2, Article ID e22711, 19 p. (2024; Zbl 1537.35385) Full Text: DOI
Khan, Qasim; Khan, Hassan; Kumam, Poom; Tchier, Fairouz; Singh, Gurpreet LADM procedure to find the analytical solutions of the nonlinear fractional dynamics of partial integro-differential equations. (English) Zbl 07813270 Demonstr. Math. 57, Article ID 20230101, 16 p. (2024). MSC: 65R20 45L05 45K05 26A33 PDFBibTeX XMLCite \textit{Q. Khan} et al., Demonstr. Math. 57, Article ID 20230101, 16 p. (2024; Zbl 07813270) Full Text: DOI OA License
Amirkhizi, Simin Aghaei; Mahmoudi, Yaghoub; Shamloo, Ali Salimi Solution of Volterra integral equations of the first kind with discontinuous kernels by using the Adomian decomposition method. (English) Zbl 1533.65253 Comput. Methods Differ. Equ. 12, No. 1, 189-195 (2024). MSC: 65R20 45D05 PDFBibTeX XMLCite \textit{S. A. Amirkhizi} et al., Comput. Methods Differ. Equ. 12, No. 1, 189--195 (2024; Zbl 1533.65253) Full Text: DOI
Pasayat, T.; Patra, A.; Sahoo, M. Fractional sight analysis of generalized perturbed Zakharov-Kuznetsov equation using Elzaki transform. (English) Zbl 1532.35491 Japan J. Ind. Appl. Math. 41, No. 1, 503-519 (2024). MSC: 35R11 26A33 35A09 PDFBibTeX XMLCite \textit{T. Pasayat} et al., Japan J. Ind. Appl. Math. 41, No. 1, 503--519 (2024; Zbl 1532.35491) Full Text: DOI
Hussain, Saddam; Arora, Gourav; Kumar, Rajesh An efficient semi-analytical technique to solve multi-dimensional Burgers’ equation. (English) Zbl 1538.35018 Comput. Appl. Math. 43, No. 1, Paper No. 11, 20 p. (2024). MSC: 35A35 35F20 35F50 35Q35 35Q90 PDFBibTeX XMLCite \textit{S. Hussain} et al., Comput. Appl. Math. 43, No. 1, Paper No. 11, 20 p. (2024; Zbl 1538.35018) Full Text: DOI
Al-Essa, Laila A.; Arshad, Mubashar; Galal, Ahmed M. Statistical analysis for solution of non-linear integro-differential equation by using odinary and accerlated technique of Kamal-Adomian decomposition. (English) Zbl 1537.65196 Eng. Anal. Bound. Elem. 154, 141-149 (2023). MSC: 65R20 45J05 PDFBibTeX XMLCite \textit{L. A. Al-Essa} et al., Eng. Anal. Bound. Elem. 154, 141--149 (2023; Zbl 1537.65196) Full Text: DOI
Singh, Jagdev; Jassim, Hassan Kamil; Kumar, Devendra; Dubey, Ved Prakash Fractal dynamics and computational analysis of local fractional Poisson equations arising in electrostatics. (English) Zbl 1537.65153 Commun. Theor. Phys. 75, No. 12, Article ID 125002, 7 p. (2023). MSC: 65M99 35R11 35Q60 PDFBibTeX XMLCite \textit{J. Singh} et al., Commun. Theor. Phys. 75, No. 12, Article ID 125002, 7 p. (2023; Zbl 1537.65153) Full Text: DOI
Johansyah, M. D.; Sumiati, I.; Rusyaman, E.; Sukono; Muslikh, M.; Mohamed, M. A.; Sambas, A. Numerical solution of the Black-Scholes partial differential equation for the option pricing model using the ADM-Kamal method. (English) Zbl 07814852 Nonlinear Dyn. Syst. Theory 23, No. 3, 295-309 (2023). MSC: 70K75 93A10 35Q91 34A08 34K37 PDFBibTeX XMLCite \textit{M. D. Johansyah} et al., Nonlinear Dyn. Syst. Theory 23, No. 3, 295--309 (2023; Zbl 07814852) Full Text: Link
Khirsariya, Sagar R.; Rao, Snehal B. Solution of fractional Sawada-Kotera-Ito equation using Caputo and Atangana-Baleanu derivatives. (English) Zbl 1532.35487 Math. Methods Appl. Sci. 46, No. 15, 16072-16091 (2023). MSC: 35R11 33E50 35L05 35Q51 PDFBibTeX XMLCite \textit{S. R. Khirsariya} and \textit{S. B. Rao}, Math. Methods Appl. Sci. 46, No. 15, 16072--16091 (2023; Zbl 1532.35487) Full Text: DOI
Adeniji, A. A.; Kekana, M. C.; Shatalov, M. Y. Semi-analytical solutions to Holling-Tanner model using both differential transform method and Adomian decomposition method. (English) Zbl 07793702 J. Appl. Math. Inform. 41, No. 5, 947-961 (2023). MSC: 92D25 92D40 65L99 PDFBibTeX XMLCite \textit{A. A. Adeniji} et al., J. Appl. Math. Inform. 41, No. 5, 947--961 (2023; Zbl 07793702) Full Text: DOI
Kaushik, Sonali; Hussain, Saddam; Kumar, Rajesh Laplace transform-based approximation methods for solving pure aggregation and breakage equations. (English) Zbl 1531.45015 Math. Methods Appl. Sci. 46, No. 16, 17402-17421 (2023). MSC: 45K05 45L05 65R20 41A58 44A10 35Q70 PDFBibTeX XMLCite \textit{S. Kaushik} et al., Math. Methods Appl. Sci. 46, No. 16, 17402--17421 (2023; Zbl 1531.45015) Full Text: DOI
Batiha, Iqbal M.; Alamarat, Nashat; Alshorm, Shameseddin; Ababneh, O. Y.; Momani, Shaher Semi-analytical solution to a coupled linear incommensurate system of fractional differential equations. (English) Zbl 1531.34008 Nonlinear Funct. Anal. Appl. 28, No. 2, 449-471 (2023). MSC: 34A08 34A30 34A45 PDFBibTeX XMLCite \textit{I. M. Batiha} et al., Nonlinear Funct. Anal. Appl. 28, No. 2, 449--471 (2023; Zbl 1531.34008) Full Text: Link
Shah, Kamal; Sher, Muhammad; Rabai’ah, Hussam; Ahmadian, Ali; Salahshour, Soheil; Pansera, Bruno A. Analytical and qualitative investigation of COVID-19 mathematical model under fractional differential operator. (English) Zbl 1532.92107 Math. Methods Appl. Sci. 46, No. 7, 8223-8242 (2023). MSC: 92D30 34A08 PDFBibTeX XMLCite \textit{K. Shah} et al., Math. Methods Appl. Sci. 46, No. 7, 8223--8242 (2023; Zbl 1532.92107) Full Text: DOI
Ogunmiloro, Oluwatayo Michael Analysis and numerical computation of a fractional order mathematical model of testosterone secretion in humans. (English) Zbl 1530.92032 S\(\vec{\text{e}}\)MA J. 80, No. 4, 629-645 (2023). MSC: 92C30 26A33 65M55 PDFBibTeX XMLCite \textit{O. M. Ogunmiloro}, S\(\vec{\text{e}}\)MA J. 80, No. 4, 629--645 (2023; Zbl 1530.92032) Full Text: DOI
Abed, Alaa Mohsin; Jafari, Hossein; Mechee, M. Sahib Discrete ADM: a tool for solving a class of classic and fractional difference problems. (English) Zbl 1538.26011 J. Math. Ext. 17, No. 5, Paper No. 2, 24 p. (2023). MSC: 26A33 39A12 PDFBibTeX XMLCite \textit{A. M. Abed} et al., J. Math. Ext. 17, No. 5, Paper No. 2, 24 p. (2023; Zbl 1538.26011) Full Text: DOI
Nanjundaswamy, N.; Rangarajan, R. Analytical approximations with exact non-integral part for Volterra’s population model. (English) Zbl 1532.92074 J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 177-186 (2023). MSC: 92D25 41A21 45J05 65R20 PDFBibTeX XMLCite \textit{N. Nanjundaswamy} and \textit{R. Rangarajan}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 177--186 (2023; Zbl 1532.92074) Full Text: DOI Link
Pandey, S. C.; Raturi, A. K. On solutions to the arms race model using some techniques of fractional calculus. (English) Zbl 1531.34052 J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 45-60 (2023). MSC: 34C60 91D99 34A08 26A33 34A45 PDFBibTeX XMLCite \textit{S. C. Pandey} and \textit{A. K. Raturi}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 45--60 (2023; Zbl 1531.34052) Full Text: DOI Link
Maji, Sandip; Natesan, Srinivasan Analytical and numerical solution techniques for a class of time-fractional integro-partial differential equations. (English) Zbl 07730427 Numer. Algorithms 94, No. 1, 229-256 (2023). MSC: 65-XX 35R09 35R11 65M06 65M12 PDFBibTeX XMLCite \textit{S. Maji} and \textit{S. Natesan}, Numer. Algorithms 94, No. 1, 229--256 (2023; Zbl 07730427) Full Text: DOI
Haboubacar, Tahirou Aboubacar; Moustapha, Djibo; Bisso, Saley Resolution and numerical simulation of a control problem of the heat equation. (English) Zbl 1538.35187 Int. J. Numer. Methods Appl. 23, No. 1, 1-17 (2023). MSC: 35K05 35A01 35A02 49M27 PDFBibTeX XMLCite \textit{T. A. Haboubacar} et al., Int. J. Numer. Methods Appl. 23, No. 1, 1--17 (2023; Zbl 1538.35187) Full Text: DOI
Bougoffa, Lazhar; Khanfer, Ammar; Bougouffa, Smail New explicit and approximate solutions of the Newton-Schrödinger system. (English) Zbl 1519.65035 J. Nonlinear Math. Phys. 30, No. 2, 795-812 (2023). MSC: 65M55 65N55 PDFBibTeX XMLCite \textit{L. Bougoffa} et al., J. Nonlinear Math. Phys. 30, No. 2, 795--812 (2023; Zbl 1519.65035) Full Text: DOI OA License
Arora, Gourav; Kumar, Rajesh; Mammeri, Youcef Homotopy perturbation and Adomian decomposition methods for condensing coagulation and Lifshitz-Slyzov models. (English) Zbl 1517.45006 GEM. Int. J. Geomath. 14, Paper No. 4, 25 p. (2023). MSC: 45K05 45L05 65R20 PDFBibTeX XMLCite \textit{G. Arora} et al., GEM. Int. J. Geomath. 14, Paper No. 4, 25 p. (2023; Zbl 1517.45006) Full Text: DOI
Maji, Sandip; Natesan, Srinivasan Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation. (English) Zbl 1518.35639 Appl. Numer. Math. 185, 549-570 (2023). MSC: 35R11 35A35 35K20 35K57 PDFBibTeX XMLCite \textit{S. Maji} and \textit{S. Natesan}, Appl. Numer. Math. 185, 549--570 (2023; Zbl 1518.35639) Full Text: DOI
Rasouli, Mansoureh; Fariborzi Araghi, Mohammad Ali; Damercheli, Tayebe Approximate techniques to solve the partial integro-differential equation arising in operational risk: Adomian decomposition method. (English) Zbl 07695258 Math. Sci., Springer 17, No. 1, 43-49 (2023). MSC: 65-XX 41Axx 60Hxx 45Kxx PDFBibTeX XMLCite \textit{M. Rasouli} et al., Math. Sci., Springer 17, No. 1, 43--49 (2023; Zbl 07695258) Full Text: DOI
Liu, Chang; Clark, Antwan D. Analysing the impact of bottom friction on shallow water waves over idealised bottom topographies. (English) Zbl 1528.76009 Geophys. Astrophys. Fluid Dyn. 117, No. 2, 107-129 (2023). MSC: 76B15 76U05 76M45 86A05 PDFBibTeX XMLCite \textit{C. Liu} and \textit{A. D. Clark}, Geophys. Astrophys. Fluid Dyn. 117, No. 2, 107--129 (2023; Zbl 1528.76009) Full Text: DOI arXiv
Liu, Chang; Clark, Antwan D. Semi-analytical solutions of shallow water waves with idealised bottom topographies. (English) Zbl 07693281 Geophys. Astrophys. Fluid Dyn. 117, No. 1, 35-58 (2023). MSC: 76U60 76B15 76M99 86A05 PDFBibTeX XMLCite \textit{C. Liu} and \textit{A. D. Clark}, Geophys. Astrophys. Fluid Dyn. 117, No. 1, 35--58 (2023; Zbl 07693281) Full Text: DOI arXiv
Vu, Ho; Phu, Nguyen Dinh; Hoa, Ngo Van A survey on random fractional differential equations involving the generalized Caputo fractional-order derivative. (English) Zbl 1509.34014 Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107202, 35 p. (2023). MSC: 34A08 34A12 34A30 34F05 PDFBibTeX XMLCite \textit{H. Vu} et al., Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107202, 35 p. (2023; Zbl 1509.34014) Full Text: DOI
Chuiko, Sergii M.; Shevtsova, Kateryna S. Solvability conditions for nonlinear matrix equations. (English. Ukrainian original) Zbl 1522.65060 J. Math. Sci., New York 270, No. 3, 407-419 (2023); translation from Ukr. Mat. Visn. 19, No. 4, 462-477 (2022). MSC: 65F45 15A24 PDFBibTeX XMLCite \textit{S. M. Chuiko} and \textit{K. S. Shevtsova}, J. Math. Sci., New York 270, No. 3, 407--419 (2023; Zbl 1522.65060); translation from Ukr. Mat. Visn. 19, No. 4, 462--477 (2022) Full Text: DOI
Tarate, Shivaji Ashok; Bhadane, Ashok P.; Gaikwad, Shrikisan B.; Kshirsagar, Kishor Ashok Solution of time-fractional equations via Sumudu-Adomian decomposition method. (English) Zbl 1538.35450 Comput. Methods Differ. Equ. 11, No. 2, 345-356 (2023). MSC: 35R11 26A33 33E12 35A22 PDFBibTeX XMLCite \textit{S. A. Tarate} et al., Comput. Methods Differ. Equ. 11, No. 2, 345--356 (2023; Zbl 1538.35450) Full Text: DOI
Meher, Ramakanta Textbook on ordinary differential equations. A theoretical approach. (English) Zbl 1522.34001 River Publishers Series in Mathematical, Statistical and Computational Modelling for Engineering. Gistrup: River Publishers; London: Routledge (ISBN 978-87-7022-763-6/hbk; 978-10-0082-402-5/pbk; 978-1-003-36064-3/ebook). xv, 273 p. (2023). Reviewer: Gudula Rünger (Chemnitz) MSC: 34-01 34Axx 34Bxx 65Lxx PDFBibTeX XMLCite \textit{R. Meher}, Textbook on ordinary differential equations. A theoretical approach. Gistrup: River Publishers; London: Routledge (2023; Zbl 1522.34001) Full Text: DOI
Kaushik, Sonali; Kumar, Rajesh A novel optimized decomposition method for Smoluchowski’s aggregation equation. (English) Zbl 1503.65317 J. Comput. Appl. Math. 419, Article ID 114710, 16 p. (2023). MSC: 65R20 45K05 PDFBibTeX XMLCite \textit{S. Kaushik} and \textit{R. Kumar}, J. Comput. Appl. Math. 419, Article ID 114710, 16 p. (2023; Zbl 1503.65317) Full Text: DOI arXiv
Duan, Jun-Sheng; Rach, Randolph; Wazwaz, Abdul-Majid Simulation of the eigenvalue problem for tapered rotating beams by the modified decomposition method. (English) Zbl 07881624 Int. J. Comput. Methods Eng. Sci. Mech. 23, No. 1, 20-28 (2022). MSC: 74K10 65L99 PDFBibTeX XMLCite \textit{J.-S. Duan} et al., Int. J. Comput. Methods Eng. Sci. Mech. 23, No. 1, 20--28 (2022; Zbl 07881624) Full Text: DOI
Bhadgaonkar, Vidya N.; Sontakke, Bhausaheb R. Analytical solution of space-time fractional physical models by improved Adomian decomposition method. (English) Zbl 07820530 Gaṇita 72, No. 2, 37-63 (2022). MSC: 65M99 33E12 35R11 PDFBibTeX XMLCite \textit{V. N. Bhadgaonkar} and \textit{B. R. Sontakke}, Gaṇita 72, No. 2, 37--63 (2022; Zbl 07820530) Full Text: Link
Chanchlani, Lata; Alha, Subhash; Mallah, Ishfaq Ahmad On Katugampola fractional \(q\)-integral and \(q\)-derivative. (English) Zbl 1538.26012 Jñānābha 52, No. 1, 101-112 (2022). MSC: 26A33 39A13 PDFBibTeX XMLCite \textit{L. Chanchlani} et al., Jñānābha 52, No. 1, 101--112 (2022; Zbl 1538.26012) Full Text: DOI
Khater, Mostafa M. A. On the dynamics of strong Langmuir turbulence through the five recent numerical schemes in the plasma physics. (English) Zbl 1535.65253 Numer. Methods Partial Differ. Equations 38, No. 3, 719-728 (2022). MSC: 65M99 65D07 41A15 76X05 76U60 76F40 76F10 76Q05 82D10 86A05 35C07 35Q35 35Q86 PDFBibTeX XMLCite \textit{M. M. A. Khater}, Numer. Methods Partial Differ. Equations 38, No. 3, 719--728 (2022; Zbl 1535.65253) Full Text: DOI
Laoubi, Marwa; Odibat, Zaid; Maayah, Banan A Legendre-based approach of the optimized decomposition method for solving nonlinear Caputo-type fractional differential equations. (English) Zbl 1532.65038 Math. Methods Appl. Sci. 45, No. 12, 7307-7321 (2022). MSC: 65L05 33C45 34A08 47G10 PDFBibTeX XMLCite \textit{M. Laoubi} et al., Math. Methods Appl. Sci. 45, No. 12, 7307--7321 (2022; Zbl 1532.65038) Full Text: DOI
Yisa, B. M.; Baruwa, A. Shehu transform Adomian decomposition method for the solution of linear and nonlinear integral and intro-differential equations. (English) Zbl 1512.34031 J. Niger. Math. Soc. 41, No. 2, 105-128 (2022). MSC: 34A34 45G10 PDFBibTeX XMLCite \textit{B. M. Yisa} and \textit{A. Baruwa}, J. Niger. Math. Soc. 41, No. 2, 105--128 (2022; Zbl 1512.34031) Full Text: Link
Mohapatra, Jugal; Panda, Abhilipsa; Reddy, Narahari Raji A comparative study on some semi-analytical methods for the solutions of fractional partial integro-differential equations. (English) Zbl 1524.35707 Fract. Differ. Calc. 12, No. 2, 223-233 (2022). MSC: 35R11 35R09 65R20 26A33 PDFBibTeX XMLCite \textit{J. Mohapatra} et al., Fract. Differ. Calc. 12, No. 2, 223--233 (2022; Zbl 1524.35707) Full Text: DOI
Awonusika, Richard Olu; Oluwafemi Olatunji, Peter Analytical and numerical solutions of a class of generalised Lane-Emden equations. (English) Zbl 1516.34057 J. Korean Soc. Ind. Appl. Math. 26, No. 4, 185-223 (2022). MSC: 34B30 34B16 34A45 65L05 34A25 PDFBibTeX XMLCite \textit{R. O. Awonusika} and \textit{P. Oluwafemi Olatunji}, J. Korean Soc. Ind. Appl. Math. 26, No. 4, 185--223 (2022; Zbl 1516.34057) Full Text: DOI
Botros, M.; Ziada, E. A. A.; El-Kalla, I. L. Semi-analytic solutions of nonlinear multidimensional fractional differential equations. (English) Zbl 1508.65095 Math. Biosci. Eng. 19, No. 12, 13306-13320 (2022). MSC: 65L99 34A08 PDFBibTeX XMLCite \textit{M. Botros} et al., Math. Biosci. Eng. 19, No. 12, 13306--13320 (2022; Zbl 1508.65095) Full Text: DOI OA License
Güngör, Nihan A note on linear non-Newtonian Volterra integral equations. (English) Zbl 1510.45001 Math. Sci., Springer 16, No. 4, 373-387 (2022); correction ibid. 17, No. 2, 219 (2023). MSC: 45D05 46A45 45B05 PDFBibTeX XMLCite \textit{N. Güngör}, Math. Sci., Springer 16, No. 4, 373--387 (2022; Zbl 1510.45001) Full Text: DOI
Yazdani, Cherati Allahbakhsh; Azimi, Allahbakhsh Investigating the effect of volume fraction, Reynolds number and dilation rate of permeable wall of vessel on the heat transfer flow of gold/copper nanofluid of blood using the Adomian decomposition method. (Persian. English summary) Zbl 1506.76229 JAMM, J. Adv. Math. Model. 12, No. 3, 402-413 (2022). MSC: 76Z05 76T20 76S05 76M99 80A19 92C35 PDFBibTeX XMLCite \textit{C. A. Yazdani} and \textit{A. Azimi}, JAMM, J. Adv. Math. Model. 12, No. 3, 402--413 (2022; Zbl 1506.76229) Full Text: DOI
Singha, N.; Nahak, C. Analytical and numerical solutions of a fractional-order mathematical model of tumor growth for variable killing rate. (English) Zbl 1524.92034 Appl. Appl. Math. 17, No. 2, 523-535 (2022). MSC: 92C32 35R11 33E12 PDFBibTeX XMLCite \textit{N. Singha} and \textit{C. Nahak}, Appl. Appl. Math. 17, No. 2, 523--535 (2022; Zbl 1524.92034) Full Text: Link
Yindoula, Joseph Bonazebi; Wellot, Yanick Alain Servais; Nkaya, Gires Dimitri; Yindoula, Deryl Nathan Bonazebi A comparative study of Adomian decomposition method and variational iteration method. (English) Zbl 1515.65137 Univers. J. Math. Math. Sci. 17, 1-30 (2022). MSC: 65J15 PDFBibTeX XMLCite \textit{J. B. Yindoula} et al., Univers. J. Math. Math. Sci. 17, 1--30 (2022; Zbl 1515.65137) Full Text: DOI OA License
Khan, Ayub; Khan, Nasreen; Chaudhary, Harindri; Nigar, Uzma Analysis and control of complex variable hyper-chaotic Robinovich system with fractional derivative. (English) Zbl 1514.34021 Int. J. Appl. Comput. Math. 8, No. 6, Paper No. 275, 23 p. (2022). MSC: 34A08 34A34 34C28 37D45 34D08 34C23 34D06 93B52 PDFBibTeX XMLCite \textit{A. Khan} et al., Int. J. Appl. Comput. Math. 8, No. 6, Paper No. 275, 23 p. (2022; Zbl 1514.34021) Full Text: DOI
Afreen, A.; Raheem, A. Study of a nonlinear system of fractional differential equations with deviated arguments via Adomian decomposition method. (English) Zbl 1509.34077 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 269, 17 p. (2022). MSC: 34K37 34K07 PDFBibTeX XMLCite \textit{A. Afreen} and \textit{A. Raheem}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 269, 17 p. (2022; Zbl 1509.34077) Full Text: DOI
Murad, Muhammad Amin Sadiq Modified integral equation combined with the decomposition method for time fractional differential equations with variable coefficients. (English) Zbl 1513.65432 Appl. Math., Ser. B (Engl. Ed.) 37, No. 3, 404-414 (2022). MSC: 65M99 44A10 35B20 26A33 35R11 35K35 PDFBibTeX XMLCite \textit{M. A. S. Murad}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 3, 404--414 (2022; Zbl 1513.65432) Full Text: DOI
Rashid, Saima; Butt, Saad Ihsan; Hammouch, Zakia; Bonyah, Ebenezer An efficient method for solving fractional Black-Scholes model with index and exponential decay kernels. (English) Zbl 1501.91182 J. Funct. Spaces 2022, Article ID 2613133, 21 p. (2022). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 91G60 65M20 91G20 35R11 PDFBibTeX XMLCite \textit{S. Rashid} et al., J. Funct. Spaces 2022, Article ID 2613133, 21 p. (2022; Zbl 1501.91182) Full Text: DOI OA License
Varsoliwala, Archana; Singh, Twinkle Analysis of brain tumour growth model by Adomian decomposition method. (English) Zbl 1497.92084 Int. J. Dyn. Syst. Differ. Equ. 12, No. 3, 267-280 (2022). MSC: 92C37 92C50 65M22 65N22 PDFBibTeX XMLCite \textit{A. Varsoliwala} and \textit{T. Singh}, Int. J. Dyn. Syst. Differ. Equ. 12, No. 3, 267--280 (2022; Zbl 1497.92084) Full Text: Link
Santra, Sudarshan; Panda, Abhilipsa; Mohapatra, Jugal A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations. (English) Zbl 07597412 J. Appl. Math. Comput. 68, No. 5, 3545-3563 (2022). MSC: 65-XX 26A33 35R09 65R20 PDFBibTeX XMLCite \textit{S. Santra} et al., J. Appl. Math. Comput. 68, No. 5, 3545--3563 (2022; Zbl 07597412) Full Text: DOI
Bougoffa, Lazhar; Rach, Randolph C. An adaptation of the modified decomposition method in solving nonlinear initial-boundary value problems for ODEs. (English) Zbl 1496.34027 J. Appl. Math. Comput. 68, No. 4, 2787-2802 (2022). MSC: 34A12 34B15 34B40 65L99 PDFBibTeX XMLCite \textit{L. Bougoffa} and \textit{R. C. Rach}, J. Appl. Math. Comput. 68, No. 4, 2787--2802 (2022; Zbl 1496.34027) Full Text: DOI
González-Gaxiola, O.; Biswas, Anjan; Yildirim, Yakup; Alshehri, Hashim M. Bright optical solitons with polynomial law of nonlinear refractive index by Adomian decomposition scheme. (English) Zbl 1502.78037 Proc. Est. Acad. Sci. 71, No. 3, 213-220 (2022). MSC: 78M99 65M55 78A60 35C08 35Q55 35Q41 PDFBibTeX XMLCite \textit{O. González-Gaxiola} et al., Proc. Est. Acad. Sci. 71, No. 3, 213--220 (2022; Zbl 1502.78037) Full Text: DOI OA License
Fafa, Wafia; Odibat, Zaid; Shawagfeh, Nabil Analytical approximate solutions for differential equations with generalized Caputo-type fractional derivatives. (English) Zbl 1504.34007 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 231, 17 p. (2022). MSC: 34A08 34A45 34A25 65L05 PDFBibTeX XMLCite \textit{W. Fafa} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 231, 17 p. (2022; Zbl 1504.34007) Full Text: DOI
Elbadri, Mohamed Initial value problems with generalized fractional derivatives and their solutions via generalized Laplace decomposition method. (English) Zbl 1497.65203 Adv. Math. Phys. 2022, Article ID 3586802, 7 p. (2022). MSC: 65M99 35C10 44A10 26A33 35R11 PDFBibTeX XMLCite \textit{M. Elbadri}, Adv. Math. Phys. 2022, Article ID 3586802, 7 p. (2022; Zbl 1497.65203) Full Text: DOI OA License
Alshammari, Saleh; Iqbal, Naveed; Yar, Mohammad Fractional-view analysis of space-time fractional Fokker-Planck equations within Caputo operator. (English) Zbl 1496.35415 J. Funct. Spaces 2022, Article ID 4471757, 12 p. (2022). MSC: 35R11 35A22 35Q84 PDFBibTeX XMLCite \textit{S. Alshammari} et al., J. Funct. Spaces 2022, Article ID 4471757, 12 p. (2022; Zbl 1496.35415) Full Text: DOI OA License
Karmakar, Somnath; Chakraverty, S. Thermal vibration of nonhomogeneous Euler nanobeam resting on Winkler foundation. (English) Zbl 1521.74091 Eng. Anal. Bound. Elem. 140, 581-591 (2022). MSC: 74H45 74K10 74S99 PDFBibTeX XMLCite \textit{S. Karmakar} and \textit{S. Chakraverty}, Eng. Anal. Bound. Elem. 140, 581--591 (2022; Zbl 1521.74091) Full Text: DOI
Mohapatra, S. N.; Mishra, S. R.; Jena, P. Time-fractional differential equations with variable order using RDTM and ADM: application to infectious-disease model. (English) Zbl 1494.35165 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 138, 20 p. (2022). MSC: 35R11 35K59 35Q92 PDFBibTeX XMLCite \textit{S. N. Mohapatra} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 138, 20 p. (2022; Zbl 1494.35165) Full Text: DOI
Kumar, Mukesh; Umesh Recent development of Adomian decomposition method for ordinary and partial differential equations. (English) Zbl 1499.34110 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 81, 25 p. (2022). MSC: 34A45 34A12 34B15 35C10 47J25 34A25 PDFBibTeX XMLCite \textit{M. Kumar} and \textit{Umesh}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 81, 25 p. (2022; Zbl 1499.34110) Full Text: DOI
Singh, Randhir; Wazwaz, Abdul-Majid An efficient method for solving the generalized Thomas-Fermi and Lane-Emden-Fowler type equations with nonlocal integral type boundary conditions. (English) Zbl 07541678 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 68, 22 p. (2022). MSC: 65-XX 45-XX PDFBibTeX XMLCite \textit{R. Singh} and \textit{A.-M. Wazwaz}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 68, 22 p. (2022; Zbl 07541678) Full Text: DOI
Rashid, Saima; Sultana, Sobia; Idrees, Nazeran; Bonyah, Ebenezer On the analytical treatment for the fractional-order coupled partial differential equations via fixed point formulation and generalized fractional derivative operators. (English) Zbl 1491.35101 J. Funct. Spaces 2022, Article ID 3764703, 23 p. (2022). MSC: 35C05 35A22 35R11 PDFBibTeX XMLCite \textit{S. Rashid} et al., J. Funct. Spaces 2022, Article ID 3764703, 23 p. (2022; Zbl 1491.35101) Full Text: DOI OA License
Sunthrayuth, Pongsakorn; Alyousef, Haifa A.; El-Tantawy, S. A.; Khan, Adnan; Wyal, Noorolhuda Solving fractional-order diffusion equations in a plasma and fluids via a novel transform. (English) Zbl 1491.35103 J. Funct. Spaces 2022, Article ID 1899130, 19 p. (2022). MSC: 35C05 35A22 35R11 PDFBibTeX XMLCite \textit{P. Sunthrayuth} et al., J. Funct. Spaces 2022, Article ID 1899130, 19 p. (2022; Zbl 1491.35103) Full Text: DOI OA License
Panda, A.; Santra, S.; Mohapatra, J. Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. (English) Zbl 1490.35523 J. Appl. Math. Comput. 68, No. 3, 2065-2082 (2022). MSC: 35R11 35R09 35A22 65R20 26A33 PDFBibTeX XMLCite \textit{A. Panda} et al., J. Appl. Math. Comput. 68, No. 3, 2065--2082 (2022; Zbl 1490.35523) Full Text: DOI
Bhanotar, Shailesh A.; Belgacem, Fethi Bin Muhammad Theory and applications of distinctive conformable triple Laplace and sumudu transforms decomposition methods. (English) Zbl 1499.35037 J. Partial Differ. Equations 35, No. 1, 49-77 (2022). MSC: 35A25 35M12 35Q40 35R11 PDFBibTeX XMLCite \textit{S. A. Bhanotar} and \textit{F. B. M. Belgacem}, J. Partial Differ. Equations 35, No. 1, 49--77 (2022; Zbl 1499.35037) Full Text: DOI
Verma, Pratibha; Kumar, Manoj An analytical solution of linear/nonlinear fractional-order partial differential equations and with new existence and uniqueness conditions. (English) Zbl 1490.35528 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 92, No. 1, 47-55 (2022). MSC: 35R11 PDFBibTeX XMLCite \textit{P. Verma} and \textit{M. Kumar}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 92, No. 1, 47--55 (2022; Zbl 1490.35528) Full Text: DOI
Mosa, Gamal A.; Abdou, Mohamed A.; Gawish, Fatma A.; Abdalla, Mostafa H. On the behaviour solutions of fractional and partial integro differential heat equations and its numerical solutions. (English) Zbl 1486.35440 Math. Slovaca 72, No. 2, 397-410 (2022). MSC: 35R11 35R09 35K20 47D06 PDFBibTeX XMLCite \textit{G. A. Mosa} et al., Math. Slovaca 72, No. 2, 397--410 (2022; Zbl 1486.35440) Full Text: DOI
Rahman, Mati Ur; Arfan, Muhammad; Deebani, Wejdan; Kumam, Poom; Shah, Zahir Analysis of time-fractional Kawahara equation under Mittag-Leffler power law. (English) Zbl 1485.35403 Fractals 30, No. 1, Article ID 2240021, 13 p. (2022). MSC: 35R11 35A22 35G25 PDFBibTeX XMLCite \textit{M. U. Rahman} et al., Fractals 30, No. 1, Article ID 2240021, 13 p. (2022; Zbl 1485.35403) Full Text: DOI
Zeidan, Dia; Chau, Chi Kin; Lu, Tzon-Tzer On the development of Adomian decomposition method for solving PDE systems with non-prescribed data. (English) Zbl 1499.35166 Comput. Appl. Math. 41, No. 3, Paper No. 87, 21 p. (2022). MSC: 35C10 35E15 35F40 35L45 41A58 PDFBibTeX XMLCite \textit{D. Zeidan} et al., Comput. Appl. Math. 41, No. 3, Paper No. 87, 21 p. (2022; Zbl 1499.35166) Full Text: DOI
Khandelwal, Yogesh; Khandelwal, Rachana Insight on treatment of HIV-1 infection on populace of \(\mathcal{CD}4^+T\)-cells based on a fractional differential model. (English) Zbl 1499.34274 Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 9, 18 p. (2022). MSC: 34C60 92C60 34A45 34A08 PDFBibTeX XMLCite \textit{Y. Khandelwal} and \textit{R. Khandelwal}, Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 9, 18 p. (2022; Zbl 1499.34274) Full Text: DOI
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDFBibTeX XMLCite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link
Rashid, Saima; Ashraf, Rehana; Bonyah, Ebenezer On analytical solution of time-fractional biological population model by means of generalized integral transform with their uniqueness and convergence analysis. (English) Zbl 1485.35100 J. Funct. Spaces 2022, Article ID 7021288, 29 p. (2022). MSC: 35C05 35A22 92D25 PDFBibTeX XMLCite \textit{S. Rashid} et al., J. Funct. Spaces 2022, Article ID 7021288, 29 p. (2022; Zbl 1485.35100) Full Text: DOI OA License
Verma, Pratibha; Kumar, Manoj New existence, uniqueness results for multi-dimensional multi-term Caputo time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains. (English) Zbl 07905182 J. Appl. Anal. Comput. 11, No. 3, 1455-1480 (2021). MSC: 47H10 35R11 PDFBibTeX XMLCite \textit{P. Verma} and \textit{M. Kumar}, J. Appl. Anal. Comput. 11, No. 3, 1455--1480 (2021; Zbl 07905182) Full Text: DOI
Manjare, Nagesh B.; Dinde, Hambirrao T. Approximate solution of fractional Riccati differential equation using sumudu decomposition method. (English) Zbl 1538.34029 Jñānābha 51, No. 1, 88-100 (2021). MSC: 34A08 26A33 49M27 34A45 34B30 44A15 PDFBibTeX XMLCite \textit{N. B. Manjare} and \textit{H. T. Dinde}, Jñānābha 51, No. 1, 88--100 (2021; Zbl 1538.34029) Full Text: DOI
Kelil, Abey S.; Appadu, Appanah R. Shehu-Adomian decomposition method for dispersive KdV-type equations. (English) Zbl 1497.35018 Chadli, Ouayl (ed.) et al., Mathematical analysis and applications, MAA 2020. Selected papers based on the presentations at the conference, Jamshedpur, India, November 2–4, 2020. Singapore: Springer. Springer Proc. Math. Stat. 381, 103-129 (2021). MSC: 35A25 35A22 34A45 PDFBibTeX XMLCite \textit{A. S. Kelil} and \textit{A. R. Appadu}, Springer Proc. Math. Stat. 381, 103--129 (2021; Zbl 1497.35018) Full Text: DOI
Thabet, Sabri T. M.; Abdo, Mohammed S.; Shah, Kamal Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo-Fabrizio derivative. (English) Zbl 1494.92150 Adv. Difference Equ. 2021, Paper No. 184, 17 p. (2021). MSC: 92D30 34A08 26A33 37N25 PDFBibTeX XMLCite \textit{S. T. M. Thabet} et al., Adv. Difference Equ. 2021, Paper No. 184, 17 p. (2021; Zbl 1494.92150) Full Text: DOI OA License
Batiha, Belal; Ghanim, Firas Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation. (English) Zbl 1491.65074 Bul. Acad. Științe Repub. Mold., Mat. 2021, No. 3(97), 21-29 (2021). MSC: 65L99 PDFBibTeX XMLCite \textit{B. Batiha} and \textit{F. Ghanim}, Bul. Acad. Științe Repub. Mold., Mat. 2021, No. 3(97), 21--29 (2021; Zbl 1491.65074) Full Text: Link
Acay, Bahar; Inc, Mustafa; Khan, Amir; Yusuf, Abdullahi Fractional methicillin-resistant Staphylococcus aureus infection model under Caputo operator. (English) Zbl 1492.92078 J. Appl. Math. Comput. 67, No. 1-2, 755-783 (2021). MSC: 92D30 34A08 PDFBibTeX XMLCite \textit{B. Acay} et al., J. Appl. Math. Comput. 67, No. 1--2, 755--783 (2021; Zbl 1492.92078) Full Text: DOI
Seny, Ouedraogo; Francis, Bassono; Rasmane, Yaro; Pare, Youssouf Comparison of three numerical analysis methods on a linear second kind Fredholm integro-differential equation. (English) Zbl 1499.65767 Adv. Differ. Equ. Control Process. 25, No. 1, 1-10 (2021). MSC: 65R20 45J05 45B05 65L99 PDFBibTeX XMLCite \textit{O. Seny} et al., Adv. Differ. Equ. Control Process. 25, No. 1, 1--10 (2021; Zbl 1499.65767) Full Text: DOI
Ebaid, Abdelhalim; Cattani, Carlo; Al Juhani, Amnah S.; El-Zahar, Essam R. A novel exact solution for the fractional Ambartsumian equation. (English) Zbl 1487.45005 Adv. Difference Equ. 2021, Paper No. 88, 19 p. (2021). MSC: 45J05 26A33 34K37 65L99 PDFBibTeX XMLCite \textit{A. Ebaid} et al., Adv. Difference Equ. 2021, Paper No. 88, 19 p. (2021; Zbl 1487.45005) Full Text: DOI OA License
Manohar, Pratibha; Chanchlani, Lata; Mallah, Ishfaq Ahmad Solutions of Cauchy problems with Caputo-Hadamard fractional derivatives. (English) Zbl 1499.35670 J. Rajasthan Acad. Phys. Sci. 20, No. 3-4, 165-174 (2021). MSC: 35R11 PDFBibTeX XMLCite \textit{P. Manohar} et al., J. Rajasthan Acad. Phys. Sci. 20, No. 3--4, 165--174 (2021; Zbl 1499.35670) Full Text: Link
Xu, Jiabin; Khan, Hassan; Shah, Rasool; Alderremy, A. A.; Aly, Shaban; Baleanu, Dumitru The analytical analysis of nonlinear fractional-order dynamical models. (English) Zbl 1484.65284 AIMS Math. 6, No. 6, 6201-6219 (2021). MSC: 65M99 35R11 PDFBibTeX XMLCite \textit{J. Xu} et al., AIMS Math. 6, No. 6, 6201--6219 (2021; Zbl 1484.65284) Full Text: DOI OA License
Mosa, Gamal A.; Abdou, Mohamed A.; Rahby, Ahmed S. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. (English) Zbl 1485.65135 AIMS Math. 6, No. 8, 8525-8543 (2021); correction ibid. 7, No. 1, 258-259 (2022). MSC: 65R20 45B05 45D05 45G10 PDFBibTeX XMLCite \textit{G. A. Mosa} et al., AIMS Math. 6, No. 8, 8525--8543 (2021; Zbl 1485.65135) Full Text: DOI OA License
Verma, Pratibha; Kumar, Manoj Hyers-Ulam stability and existence of solution for nonlinear variable fractional differential equations with singular kernel. (English) Zbl 1499.65364 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 147, 15 p. (2021). MSC: 65L99 34A08 PDFBibTeX XMLCite \textit{P. Verma} and \textit{M. Kumar}, Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 147, 15 p. (2021; Zbl 1499.65364) Full Text: DOI
Singh, Randhir; Singh, Gagandeep; Singh, Mehakpreet Numerical algorithm for solution of the system of Emden-Fowler type equations. (English) Zbl 1513.65239 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 136, 20 p. (2021). MSC: 65L10 34B05 34B15 34B16 34B18 34B27 PDFBibTeX XMLCite \textit{R. Singh} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 136, 20 p. (2021; Zbl 1513.65239) Full Text: DOI
Mohammed, A. S. H. F.; Bakodah, H. O. Approximate solutions for dark and singular optical solitons of Chen-Lee-Liu model by Adomian-based methods. (English) Zbl 07490029 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 98, 12 p. (2021). MSC: 65-XX 78-XX PDFBibTeX XMLCite \textit{A. S. H. F. Mohammed} and \textit{H. O. Bakodah}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 98, 12 p. (2021; Zbl 07490029) Full Text: DOI OA License
Varsoliwala, Archana; Singh, Twinkle; Shah, Kunjan Hybrid approach for the study of concentration of the longitudinal dispersion phenomenon. (English) Zbl 1499.76118 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 233, 10 p. (2021). MSC: 76S05 65M99 PDFBibTeX XMLCite \textit{A. Varsoliwala} et al., Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 233, 10 p. (2021; Zbl 1499.76118) Full Text: DOI
Dash, R. K.; Mishra, S. R.; Sharma, Ram Prakash Squeezing flow analysis of AA7072-water and AA7075-water nanofluids with dissipative energy. (English) Zbl 1487.76095 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 229, 14 p. (2021). MSC: 76T20 76W05 76M99 PDFBibTeX XMLCite \textit{R. K. Dash} et al., Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 229, 14 p. (2021; Zbl 1487.76095) Full Text: DOI
Shabibi, Mehdi; Charandabi, Zohreh Zeinalabedini; Mohammadi, Hakimeh; Rezapour, Shahram Investigation of mathematical model of human liver by Caputo fractional derivative approach. (Persian. English summary) Zbl 1485.92030 JAMM, J. Adv. Math. Model. 11, No. 4, 750-760 (2021). MSC: 92C30 26A33 PDFBibTeX XMLCite \textit{M. Shabibi} et al., JAMM, J. Adv. Math. Model. 11, No. 4, 750--760 (2021; Zbl 1485.92030) Full Text: DOI
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Some powerful techniques for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 1492.65360 J. Appl. Nonlinear Dyn. 10, No. 3, 461-469 (2021). MSC: 65R20 45D05 45B05 PDFBibTeX XMLCite \textit{A. A. Hamoud} et al., J. Appl. Nonlinear Dyn. 10, No. 3, 461--469 (2021; Zbl 1492.65360) Full Text: DOI
Ali, Amir; Gul, Zamin; Khan, Wajahat Ali; Ahmad, Saeed; Zeb, Salman Investigation of fractional order sine-Gordon equation using Laplace Adomian decomposition method. (English) Zbl 1482.35240 Fractals 29, No. 5, Article ID 2150121, 10 p. (2021). MSC: 35R11 35A22 35K58 PDFBibTeX XMLCite \textit{A. Ali} et al., Fractals 29, No. 5, Article ID 2150121, 10 p. (2021; Zbl 1482.35240) Full Text: DOI
Alghamdi, A. S.; Alzaidy, J. F.; Hussain, A. K. Numerical approach of nonlinear fractional initial value problems by combination of the two methods: Adomian decomposition method and Jacobi spectral collocation. (English) Zbl 1499.34092 J. Fract. Calc. Appl. 12, No. 3, Article 9, 10 p. (2021). MSC: 34A12 34A45 65L05 34A08 PDFBibTeX XMLCite \textit{A. S. Alghamdi} et al., J. Fract. Calc. Appl. 12, No. 3, Article 9, 10 p. (2021; Zbl 1499.34092) Full Text: Link
Yang, Kaijun; Zhu, Guchuan A dynamic compensator for in-domain control of Burgers’ equation. (English) Zbl 1480.93202 Int. J. Control 94, No. 7, 1920-1930 (2021). MSC: 93C20 93B52 93C10 PDFBibTeX XMLCite \textit{K. Yang} and \textit{G. Zhu}, Int. J. Control 94, No. 7, 1920--1930 (2021; Zbl 1480.93202) Full Text: DOI
Li, Dandan; Yin, Shan Approximate solution of viscous heating in plane Couette flow. (Chinese. English summary) Zbl 1488.65725 Math. Pract. Theory 51, No. 15, 203-208 (2021). MSC: 65N99 80A19 35Q35 PDFBibTeX XMLCite \textit{D. Li} and \textit{S. Yin}, Math. Pract. Theory 51, No. 15, 203--208 (2021; Zbl 1488.65725)