Nanjundaswamy, N.; Rangarajan, R. Analytical approximations with exact non-integral part for Volterra’s population model. (English) Zbl 07743265 J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 177-186 (2023). MSC: 41A21 PDF BibTeX XML Cite \textit{N. Nanjundaswamy} and \textit{R. Rangarajan}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 177--186 (2023; Zbl 07743265) Full Text: Link
Pandey, S. C.; Raturi, A. K. On solutions to the arms race model using some techniques of fractional calculus. (English) Zbl 07743256 J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 45-60 (2023). MSC: 26A33 35A99 91B74 PDF BibTeX XML Cite \textit{S. C. Pandey} and \textit{A. K. Raturi}, J. Ramanujan Soc. Math. Math. Sci. 10, No. 2, 45--60 (2023; Zbl 07743256) Full Text: Link
Agilan, K.; Parthiban, V. Initial and boundary value problem of fuzzy fractional-order nonlinear Volterra integro-differential equations. (English) Zbl 07734305 J. Appl. Math. Comput. 69, No. 2, 1765-1793 (2023). MSC: 03E72 34A07 34A08 PDF BibTeX XML Cite \textit{K. Agilan} and \textit{V. Parthiban}, J. Appl. Math. Comput. 69, No. 2, 1765--1793 (2023; Zbl 07734305) Full Text: DOI
Maji, Sandip; Natesan, Srinivasan Analytical and numerical solution techniques for a class of time-fractional integro-partial differential equations. (English) Zbl 07730427 Numer. Algorithms 94, No. 1, 229-256 (2023). MSC: 65-XX 35R09 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{S. Maji} and \textit{S. Natesan}, Numer. Algorithms 94, No. 1, 229--256 (2023; Zbl 07730427) Full Text: DOI
Haboubacar, Tahirou Aboubacar; Moustapha, Djibo; Bisso, Saley Resolution and numerical simulation of a control problem of the heat equation. (English) Zbl 07727265 Int. J. Numer. Methods Appl. 23, No. 1, 1-17 (2023). MSC: 35A01 35A02 35K05 49M27 PDF BibTeX XML Cite \textit{T. A. Haboubacar} et al., Int. J. Numer. Methods Appl. 23, No. 1, 1--17 (2023; Zbl 07727265) Full Text: DOI
Bougoffa, Lazhar; Khanfer, Ammar; Bougouffa, Smail New explicit and approximate solutions of the Newton-Schrödinger system. (English) Zbl 07723476 J. Nonlinear Math. Phys. 30, No. 2, 795-812 (2023). MSC: 65M55 65N55 PDF BibTeX XML Cite \textit{L. Bougoffa} et al., J. Nonlinear Math. Phys. 30, No. 2, 795--812 (2023; Zbl 07723476) Full Text: DOI
Arora, Gourav; Kumar, Rajesh; Mammeri, Youcef Homotopy perturbation and Adomian decomposition methods for condensing coagulation and Lifshitz-Slyzov models. (English) Zbl 1517.45006 GEM. Int. J. Geomath. 14, Paper No. 4, 25 p. (2023). MSC: 45K05 45L05 65R20 PDF BibTeX XML Cite \textit{G. Arora} et al., GEM. Int. J. Geomath. 14, Paper No. 4, 25 p. (2023; Zbl 1517.45006) Full Text: DOI
Maji, Sandip; Natesan, Srinivasan Analytical and numerical solutions of time-fractional advection-diffusion-reaction equation. (English) Zbl 07699024 Appl. Numer. Math. 185, 549-570 (2023). MSC: 35R11 35A35 35K20 35K57 PDF BibTeX XML Cite \textit{S. Maji} and \textit{S. Natesan}, Appl. Numer. Math. 185, 549--570 (2023; Zbl 07699024) Full Text: DOI
Rasouli, Mansoureh; Fariborzi Araghi, Mohammad Ali; Damercheli, Tayebe Approximate techniques to solve the partial integro-differential equation arising in operational risk: Adomian decomposition method. (English) Zbl 07695258 Math. Sci., Springer 17, No. 1, 43-49 (2023). MSC: 65-XX 41Axx 60Hxx 45Kxx PDF BibTeX XML Cite \textit{M. Rasouli} et al., Math. Sci., Springer 17, No. 1, 43--49 (2023; Zbl 07695258) Full Text: DOI
Liu, Chang; Clark, Antwan D. Analysing the impact of bottom friction on shallow water waves over idealised bottom topographies. (English) Zbl 07693284 Geophys. Astrophys. Fluid Dyn. 117, No. 2, 107-129 (2023). MSC: 76-XX 86-XX PDF BibTeX XML Cite \textit{C. Liu} and \textit{A. D. Clark}, Geophys. Astrophys. Fluid Dyn. 117, No. 2, 107--129 (2023; Zbl 07693284) Full Text: DOI arXiv
Liu, Chang; Clark, Antwan D. Semi-analytical solutions of shallow water waves with idealised bottom topographies. (English) Zbl 07693281 Geophys. Astrophys. Fluid Dyn. 117, No. 1, 35-58 (2023). MSC: 76-XX 86-XX PDF BibTeX XML Cite \textit{C. Liu} and \textit{A. D. Clark}, Geophys. Astrophys. Fluid Dyn. 117, No. 1, 35--58 (2023; Zbl 07693281) Full Text: DOI arXiv
Vu, Ho; Phu, Nguyen Dinh; Hoa, Ngo Van A survey on random fractional differential equations involving the generalized Caputo fractional-order derivative. (English) Zbl 1509.34014 Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107202, 35 p. (2023). MSC: 34A08 34A12 34A30 34F05 PDF BibTeX XML Cite \textit{H. Vu} et al., Commun. Nonlinear Sci. Numer. Simul. 121, Article ID 107202, 35 p. (2023; Zbl 1509.34014) Full Text: DOI
Chuiko, Sergii M.; Shevtsova, Kateryna S. Solvability conditions for nonlinear matrix equations. (English. Ukrainian original) Zbl 07672100 J. Math. Sci., New York 270, No. 3, 407-419 (2023); translation from Ukr. Mat. Visn. 19, No. 4, 462-477 (2022). MSC: 47J25 PDF BibTeX XML Cite \textit{S. M. Chuiko} and \textit{K. S. Shevtsova}, J. Math. Sci., New York 270, No. 3, 407--419 (2023; Zbl 07672100); translation from Ukr. Mat. Visn. 19, No. 4, 462--477 (2022) Full Text: DOI
Tarate, Shivaji Ashok; Bhadane, Ashok P.; Gaikwad, Shrikisan B.; Kshirsagar, Kishor Ashok Solution of time-fractional equations via Sumudu-Adomian decomposition method. (English) Zbl 07665315 Comput. Methods Differ. Equ. 11, No. 2, 345-356 (2023). MSC: 26A33 35R11 33E12 PDF BibTeX XML Cite \textit{S. A. Tarate} et al., Comput. Methods Differ. Equ. 11, No. 2, 345--356 (2023; Zbl 07665315) Full Text: DOI
Kaushik, Sonali; Kumar, Rajesh A novel optimized decomposition method for Smoluchowski’s aggregation equation. (English) Zbl 1503.65317 J. Comput. Appl. Math. 419, Article ID 114710, 16 p. (2023). MSC: 65R20 45K05 PDF BibTeX XML Cite \textit{S. Kaushik} and \textit{R. Kumar}, J. Comput. Appl. Math. 419, Article ID 114710, 16 p. (2023; Zbl 1503.65317) Full Text: DOI arXiv
Yisa, B. M.; Baruwa, A. Shehu transform Adomian decomposition method for the solution of linear and nonlinear integral and intro-differential equations. (English) Zbl 1512.34031 J. Niger. Math. Soc. 41, No. 2, 105-128 (2022). MSC: 34A34 45G10 PDF BibTeX XML Cite \textit{B. M. Yisa} and \textit{A. Baruwa}, J. Niger. Math. Soc. 41, No. 2, 105--128 (2022; Zbl 1512.34031) Full Text: Link
Mohapatra, Jugal; Panda, Abhilipsa; Reddy, Narahari Raji A comparative study on some semi-analytical methods for the solutions of fractional partial integro-differential equations. (English) Zbl 07689840 Fract. Differ. Calc. 12, No. 2, 223-233 (2022). MSC: 35R11 35R09 65R20 26A33 PDF BibTeX XML Cite \textit{J. Mohapatra} et al., Fract. Differ. Calc. 12, No. 2, 223--233 (2022; Zbl 07689840) Full Text: DOI
Awonusika, Richard Olu; Oluwafemi Olatunji, Peter Analytical and numerical solutions of a class of generalised Lane-Emden equations. (English) Zbl 1516.34057 J. Korean Soc. Ind. Appl. Math. 26, No. 4, 185-223 (2022). MSC: 34B30 34B16 34A45 65L05 34A25 PDF BibTeX XML Cite \textit{R. O. Awonusika} and \textit{P. Oluwafemi Olatunji}, J. Korean Soc. Ind. Appl. Math. 26, No. 4, 185--223 (2022; Zbl 1516.34057) Full Text: DOI
Botros, M.; Ziada, E. A. A.; El-Kalla, I. L. Semi-analytic solutions of nonlinear multidimensional fractional differential equations. (English) Zbl 1508.65095 Math. Biosci. Eng. 19, No. 12, 13306-13320 (2022). MSC: 65L99 34A08 PDF BibTeX XML Cite \textit{M. Botros} et al., Math. Biosci. Eng. 19, No. 12, 13306--13320 (2022; Zbl 1508.65095) Full Text: DOI
Güngör, Nihan A note on linear non-Newtonian Volterra integral equations. (English) Zbl 1510.45001 Math. Sci., Springer 16, No. 4, 373-387 (2022); correction ibid. 17, No. 2, 219 (2023). MSC: 45D05 46A45 45B05 PDF BibTeX XML Cite \textit{N. Güngör}, Math. Sci., Springer 16, No. 4, 373--387 (2022; Zbl 1510.45001) Full Text: DOI
Yazdani, Cherati Allahbakhsh; Azimi, Allahbakhsh Investigating the effect of volume fraction, Reynolds number and dilation rate of permeable wall of vessel on the heat transfer flow of gold/copper nanofluid of blood using the Adomian decomposition method. (Persian. English summary) Zbl 1506.76229 JAMM, J. Adv. Math. Model. 12, No. 3, 402-413 (2022). MSC: 76Z05 76T20 76S05 76M99 80A19 92C35 PDF BibTeX XML Cite \textit{C. A. Yazdani} and \textit{A. Azimi}, JAMM, J. Adv. Math. Model. 12, No. 3, 402--413 (2022; Zbl 1506.76229) Full Text: DOI
Singha, N.; Nahak, C. Analytical and numerical solutions of a fractional-order mathematical model of tumor growth for variable killing rate. (English) Zbl 07644920 Appl. Appl. Math. 17, No. 2, 523-535 (2022). MSC: 92C32 35R11 33E12 PDF BibTeX XML Cite \textit{N. Singha} and \textit{C. Nahak}, Appl. Appl. Math. 17, No. 2, 523--535 (2022; Zbl 07644920) Full Text: Link
Yindoula, Joseph Bonazebi; Wellot, Yanick Alain Servais; Nkaya, Gires Dimitri; Yindoula, Deryl Nathan Bonazebi A comparative study of Adomian decomposition method and variational iteration method. (English) Zbl 1515.65137 Univers. J. Math. Math. Sci. 17, 1-30 (2022). MSC: 65J15 PDF BibTeX XML Cite \textit{J. B. Yindoula} et al., Univers. J. Math. Math. Sci. 17, 1--30 (2022; Zbl 1515.65137) Full Text: DOI
Khan, Ayub; Khan, Nasreen; Chaudhary, Harindri; Nigar, Uzma Analysis and control of complex variable hyper-chaotic Robinovich system with fractional derivative. (English) Zbl 1514.34021 Int. J. Appl. Comput. Math. 8, No. 6, Paper No. 275, 23 p. (2022). MSC: 34A08 34A34 34C28 37D45 34D08 34C23 34D06 93B52 PDF BibTeX XML Cite \textit{A. Khan} et al., Int. J. Appl. Comput. Math. 8, No. 6, Paper No. 275, 23 p. (2022; Zbl 1514.34021) Full Text: DOI
Afreen, A.; Raheem, A. Study of a nonlinear system of fractional differential equations with deviated arguments via Adomian decomposition method. (English) Zbl 1509.34077 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 269, 17 p. (2022). MSC: 34K37 34K07 PDF BibTeX XML Cite \textit{A. Afreen} and \textit{A. Raheem}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 269, 17 p. (2022; Zbl 1509.34077) Full Text: DOI
Murad, Muhammad Amin Sadiq Modified integral equation combined with the decomposition method for time fractional differential equations with variable coefficients. (English) Zbl 1513.65432 Appl. Math., Ser. B (Engl. Ed.) 37, No. 3, 404-414 (2022). MSC: 65M99 44A10 35B20 26A33 35R11 35K35 PDF BibTeX XML Cite \textit{M. A. S. Murad}, Appl. Math., Ser. B (Engl. Ed.) 37, No. 3, 404--414 (2022; Zbl 1513.65432) Full Text: DOI
Rashid, Saima; Butt, Saad Ihsan; Hammouch, Zakia; Bonyah, Ebenezer An efficient method for solving fractional Black-Scholes model with index and exponential decay kernels. (English) Zbl 1501.91182 J. Funct. Spaces 2022, Article ID 2613133, 21 p. (2022). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 91G60 65M20 91G20 35R11 PDF BibTeX XML Cite \textit{S. Rashid} et al., J. Funct. Spaces 2022, Article ID 2613133, 21 p. (2022; Zbl 1501.91182) Full Text: DOI
Varsoliwala, Archana; Singh, Twinkle Analysis of brain tumour growth model by Adomian decomposition method. (English) Zbl 1497.92084 Int. J. Dyn. Syst. Differ. Equ. 12, No. 3, 267-280 (2022). MSC: 92C37 92C50 65M22 65N22 PDF BibTeX XML Cite \textit{A. Varsoliwala} and \textit{T. Singh}, Int. J. Dyn. Syst. Differ. Equ. 12, No. 3, 267--280 (2022; Zbl 1497.92084) Full Text: Link
Santra, Sudarshan; Panda, Abhilipsa; Mohapatra, Jugal A novel approach for solving multi-term time fractional Volterra-Fredholm partial integro-differential equations. (English) Zbl 07597412 J. Appl. Math. Comput. 68, No. 5, 3545-3563 (2022). MSC: 65-XX 26A33 35R09 65R20 PDF BibTeX XML Cite \textit{S. Santra} et al., J. Appl. Math. Comput. 68, No. 5, 3545--3563 (2022; Zbl 07597412) Full Text: DOI
Bougoffa, Lazhar; Rach, Randolph C. An adaptation of the modified decomposition method in solving nonlinear initial-boundary value problems for ODEs. (English) Zbl 1496.34027 J. Appl. Math. Comput. 68, No. 4, 2787-2802 (2022). MSC: 34A12 34B15 34B40 65L99 PDF BibTeX XML Cite \textit{L. Bougoffa} and \textit{R. C. Rach}, J. Appl. Math. Comput. 68, No. 4, 2787--2802 (2022; Zbl 1496.34027) Full Text: DOI
González-Gaxiola, O.; Biswas, Anjan; Yildirim, Yakup; Alshehri, Hashim M. Bright optical solitons with polynomial law of nonlinear refractive index by Adomian decomposition scheme. (English) Zbl 1502.78037 Proc. Est. Acad. Sci. 71, No. 3, 213-220 (2022). MSC: 78M99 65M55 78A60 35C08 35Q55 35Q41 PDF BibTeX XML Cite \textit{O. González-Gaxiola} et al., Proc. Est. Acad. Sci. 71, No. 3, 213--220 (2022; Zbl 1502.78037) Full Text: DOI
Fafa, Wafia; Odibat, Zaid; Shawagfeh, Nabil Analytical approximate solutions for differential equations with generalized Caputo-type fractional derivatives. (English) Zbl 1504.34007 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 231, 17 p. (2022). MSC: 34A08 34A45 34A25 65L05 PDF BibTeX XML Cite \textit{W. Fafa} et al., Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 231, 17 p. (2022; Zbl 1504.34007) Full Text: DOI
Elbadri, Mohamed Initial value problems with generalized fractional derivatives and their solutions via generalized Laplace decomposition method. (English) Zbl 1497.65203 Adv. Math. Phys. 2022, Article ID 3586802, 7 p. (2022). MSC: 65M99 35C10 44A10 26A33 35R11 PDF BibTeX XML Cite \textit{M. Elbadri}, Adv. Math. Phys. 2022, Article ID 3586802, 7 p. (2022; Zbl 1497.65203) Full Text: DOI
Alshammari, Saleh; Iqbal, Naveed; Yar, Mohammad Fractional-view analysis of space-time fractional Fokker-Planck equations within Caputo operator. (English) Zbl 1496.35415 J. Funct. Spaces 2022, Article ID 4471757, 12 p. (2022). MSC: 35R11 35A22 35Q84 PDF BibTeX XML Cite \textit{S. Alshammari} et al., J. Funct. Spaces 2022, Article ID 4471757, 12 p. (2022; Zbl 1496.35415) Full Text: DOI
Karmakar, Somnath; Chakraverty, S. Thermal vibration of nonhomogeneous Euler nanobeam resting on Winkler foundation. (English) Zbl 07568150 Eng. Anal. Bound. Elem. 140, 581-591 (2022). MSC: 74-XX 35-XX PDF BibTeX XML Cite \textit{S. Karmakar} and \textit{S. Chakraverty}, Eng. Anal. Bound. Elem. 140, 581--591 (2022; Zbl 07568150) Full Text: DOI
Mohapatra, S. N.; Mishra, S. R.; Jena, P. Time-fractional differential equations with variable order using RDTM and ADM: application to infectious-disease model. (English) Zbl 1494.35165 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 138, 20 p. (2022). MSC: 35R11 35K59 35Q92 PDF BibTeX XML Cite \textit{S. N. Mohapatra} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 138, 20 p. (2022; Zbl 1494.35165) Full Text: DOI
Kumar, Mukesh; Umesh Recent development of Adomian decomposition method for ordinary and partial differential equations. (English) Zbl 1499.34110 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 81, 25 p. (2022). MSC: 34A45 34A12 34B15 35C10 47J25 34A25 PDF BibTeX XML Cite \textit{M. Kumar} and \textit{Umesh}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 81, 25 p. (2022; Zbl 1499.34110) Full Text: DOI
Singh, Randhir; Wazwaz, Abdul-Majid An efficient method for solving the generalized Thomas-Fermi and Lane-Emden-Fowler type equations with nonlocal integral type boundary conditions. (English) Zbl 07541678 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 68, 22 p. (2022). MSC: 65-XX 45-XX PDF BibTeX XML Cite \textit{R. Singh} and \textit{A.-M. Wazwaz}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 68, 22 p. (2022; Zbl 07541678) Full Text: DOI
Rashid, Saima; Sultana, Sobia; Idrees, Nazeran; Bonyah, Ebenezer On the analytical treatment for the fractional-order coupled partial differential equations via fixed point formulation and generalized fractional derivative operators. (English) Zbl 1491.35101 J. Funct. Spaces 2022, Article ID 3764703, 23 p. (2022). MSC: 35C05 35A22 35R11 PDF BibTeX XML Cite \textit{S. Rashid} et al., J. Funct. Spaces 2022, Article ID 3764703, 23 p. (2022; Zbl 1491.35101) Full Text: DOI
Sunthrayuth, Pongsakorn; Alyousef, Haifa A.; El-Tantawy, S. A.; Khan, Adnan; Wyal, Noorolhuda Solving fractional-order diffusion equations in a plasma and fluids via a novel transform. (English) Zbl 1491.35103 J. Funct. Spaces 2022, Article ID 1899130, 19 p. (2022). MSC: 35C05 35A22 35R11 PDF BibTeX XML Cite \textit{P. Sunthrayuth} et al., J. Funct. Spaces 2022, Article ID 1899130, 19 p. (2022; Zbl 1491.35103) Full Text: DOI
Panda, A.; Santra, S.; Mohapatra, J. Adomian decomposition and homotopy perturbation method for the solution of time fractional partial integro-differential equations. (English) Zbl 1490.35523 J. Appl. Math. Comput. 68, No. 3, 2065-2082 (2022). MSC: 35R11 35R09 35A22 65R20 26A33 PDF BibTeX XML Cite \textit{A. Panda} et al., J. Appl. Math. Comput. 68, No. 3, 2065--2082 (2022; Zbl 1490.35523) Full Text: DOI
Bhanotar, Shailesh A.; Belgacem, Fethi Bin Muhammad Theory and applications of distinctive conformable triple Laplace and sumudu transforms decomposition methods. (English) Zbl 1499.35037 J. Partial Differ. Equations 35, No. 1, 49-77 (2022). MSC: 35A25 35M12 35Q40 35R11 PDF BibTeX XML Cite \textit{S. A. Bhanotar} and \textit{F. B. M. Belgacem}, J. Partial Differ. Equations 35, No. 1, 49--77 (2022; Zbl 1499.35037) Full Text: DOI
Verma, Pratibha; Kumar, Manoj An analytical solution of linear/nonlinear fractional-order partial differential equations and with new existence and uniqueness conditions. (English) Zbl 1490.35528 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 92, No. 1, 47-55 (2022). MSC: 35R11 PDF BibTeX XML Cite \textit{P. Verma} and \textit{M. Kumar}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 92, No. 1, 47--55 (2022; Zbl 1490.35528) Full Text: DOI
Mosa, Gamal A.; Abdou, Mohamed A.; Gawish, Fatma A.; Abdalla, Mostafa H. On the behaviour solutions of fractional and partial integro differential heat equations and its numerical solutions. (English) Zbl 1486.35440 Math. Slovaca 72, No. 2, 397-410 (2022). MSC: 35R11 35R09 35K20 47D06 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., Math. Slovaca 72, No. 2, 397--410 (2022; Zbl 1486.35440) Full Text: DOI
Rahman, Mati Ur; Arfan, Muhammad; Deebani, Wejdan; Kumam, Poom; Shah, Zahir Analysis of time-fractional Kawahara equation under Mittag-Leffler power law. (English) Zbl 1485.35403 Fractals 30, No. 1, Article ID 2240021, 13 p. (2022). MSC: 35R11 35A22 35G25 PDF BibTeX XML Cite \textit{M. U. Rahman} et al., Fractals 30, No. 1, Article ID 2240021, 13 p. (2022; Zbl 1485.35403) Full Text: DOI
Zeidan, Dia; Chau, Chi Kin; Lu, Tzon-Tzer On the development of Adomian decomposition method for solving PDE systems with non-prescribed data. (English) Zbl 1499.35166 Comput. Appl. Math. 41, No. 3, Paper No. 87, 21 p. (2022). MSC: 35C10 35E15 35F40 35L45 41A58 PDF BibTeX XML Cite \textit{D. Zeidan} et al., Comput. Appl. Math. 41, No. 3, Paper No. 87, 21 p. (2022; Zbl 1499.35166) Full Text: DOI
Khandelwal, Yogesh; Khandelwal, Rachana Insight on treatment of HIV-1 infection on populace of \(\mathcal{CD}4^+T\)-cells based on a fractional differential model. (English) Zbl 1499.34274 Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 9, 18 p. (2022). MSC: 34C60 92C60 34A45 34A08 PDF BibTeX XML Cite \textit{Y. Khandelwal} and \textit{R. Khandelwal}, Int. J. Appl. Comput. Math. 8, No. 1, Paper No. 9, 18 p. (2022; Zbl 1499.34274) Full Text: DOI
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 1484.49057 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 1484.49057) Full Text: Link
Rashid, Saima; Ashraf, Rehana; Bonyah, Ebenezer On analytical solution of time-fractional biological population model by means of generalized integral transform with their uniqueness and convergence analysis. (English) Zbl 1485.35100 J. Funct. Spaces 2022, Article ID 7021288, 29 p. (2022). MSC: 35C05 35A22 92D25 PDF BibTeX XML Cite \textit{S. Rashid} et al., J. Funct. Spaces 2022, Article ID 7021288, 29 p. (2022; Zbl 1485.35100) Full Text: DOI
Kelil, Abey S.; Appadu, Appanah R. Shehu-Adomian decomposition method for dispersive KdV-type equations. (English) Zbl 1497.35018 Chadli, Ouayl (ed.) et al., Mathematical analysis and applications, MAA 2020. Selected papers based on the presentations at the conference, Jamshedpur, India, November 2–4, 2020. Singapore: Springer. Springer Proc. Math. Stat. 381, 103-129 (2021). MSC: 35A25 35A22 34A45 PDF BibTeX XML Cite \textit{A. S. Kelil} and \textit{A. R. Appadu}, Springer Proc. Math. Stat. 381, 103--129 (2021; Zbl 1497.35018) Full Text: DOI
Thabet, Sabri T. M.; Abdo, Mohammed S.; Shah, Kamal Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo-Fabrizio derivative. (English) Zbl 1494.92150 Adv. Difference Equ. 2021, Paper No. 184, 17 p. (2021). MSC: 92D30 34A08 26A33 37N25 PDF BibTeX XML Cite \textit{S. T. M. Thabet} et al., Adv. Difference Equ. 2021, Paper No. 184, 17 p. (2021; Zbl 1494.92150) Full Text: DOI
Batiha, Belal; Ghanim, Firas Numerical implementation of Daftardar-Gejji and Jafari method to the quadratic Riccati equation. (English) Zbl 1491.65074 Bul. Acad. Științe Repub. Mold., Mat. 2021, No. 3(97), 21-29 (2021). MSC: 65L99 PDF BibTeX XML Cite \textit{B. Batiha} and \textit{F. Ghanim}, Bul. Acad. Științe Repub. Mold., Mat. 2021, No. 3(97), 21--29 (2021; Zbl 1491.65074) Full Text: Link
Acay, Bahar; Inc, Mustafa; Khan, Amir; Yusuf, Abdullahi Fractional methicillin-resistant Staphylococcus aureus infection model under Caputo operator. (English) Zbl 1492.92078 J. Appl. Math. Comput. 67, No. 1-2, 755-783 (2021). MSC: 92D30 34A08 PDF BibTeX XML Cite \textit{B. Acay} et al., J. Appl. Math. Comput. 67, No. 1--2, 755--783 (2021; Zbl 1492.92078) Full Text: DOI
Seny, Ouedraogo; Francis, Bassono; Rasmane, Yaro; Pare, Youssouf Comparison of three numerical analysis methods on a linear second kind Fredholm integro-differential equation. (English) Zbl 1499.65767 Adv. Differ. Equ. Control Process. 25, No. 1, 1-10 (2021). MSC: 65R20 45J05 45B05 65L99 PDF BibTeX XML Cite \textit{O. Seny} et al., Adv. Differ. Equ. Control Process. 25, No. 1, 1--10 (2021; Zbl 1499.65767) Full Text: DOI
Ebaid, Abdelhalim; Cattani, Carlo; Al Juhani, Amnah S.; El-Zahar, Essam R. A novel exact solution for the fractional Ambartsumian equation. (English) Zbl 1487.45005 Adv. Difference Equ. 2021, Paper No. 88, 19 p. (2021). MSC: 45J05 26A33 34K37 65L99 PDF BibTeX XML Cite \textit{A. Ebaid} et al., Adv. Difference Equ. 2021, Paper No. 88, 19 p. (2021; Zbl 1487.45005) Full Text: DOI
Manohar, Pratibha; Chanchlani, Lata; Mallah, Ishfaq Ahmad Solutions of Cauchy problems with Caputo-Hadamard fractional derivatives. (English) Zbl 1499.35670 J. Rajasthan Acad. Phys. Sci. 20, No. 3-4, 165-174 (2021). MSC: 35R11 PDF BibTeX XML Cite \textit{P. Manohar} et al., J. Rajasthan Acad. Phys. Sci. 20, No. 3--4, 165--174 (2021; Zbl 1499.35670) Full Text: Link
Xu, Jiabin; Khan, Hassan; Shah, Rasool; Alderremy, A. A.; Aly, Shaban; Baleanu, Dumitru The analytical analysis of nonlinear fractional-order dynamical models. (English) Zbl 1484.65284 AIMS Math. 6, No. 6, 6201-6219 (2021). MSC: 65M99 35R11 PDF BibTeX XML Cite \textit{J. Xu} et al., AIMS Math. 6, No. 6, 6201--6219 (2021; Zbl 1484.65284) Full Text: DOI
Mosa, Gamal A.; Abdou, Mohamed A.; Rahby, Ahmed S. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. (English) Zbl 1485.65135 AIMS Math. 6, No. 8, 8525-8543 (2021); correction ibid. 7, No. 1, 258-259 (2022). MSC: 65R20 45B05 45D05 45G10 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., AIMS Math. 6, No. 8, 8525--8543 (2021; Zbl 1485.65135) Full Text: DOI
Verma, Pratibha; Kumar, Manoj Hyers-Ulam stability and existence of solution for nonlinear variable fractional differential equations with singular kernel. (English) Zbl 1499.65364 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 147, 15 p. (2021). MSC: 65L99 34A08 PDF BibTeX XML Cite \textit{P. Verma} and \textit{M. Kumar}, Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 147, 15 p. (2021; Zbl 1499.65364) Full Text: DOI
Singh, Randhir; Singh, Gagandeep; Singh, Mehakpreet Numerical algorithm for solution of the system of Emden-Fowler type equations. (English) Zbl 1513.65239 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 136, 20 p. (2021). MSC: 65L10 34B05 34B15 34B16 34B18 34B27 PDF BibTeX XML Cite \textit{R. Singh} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 136, 20 p. (2021; Zbl 1513.65239) Full Text: DOI
Mohammed, A. S. H. F.; Bakodah, H. O. Approximate solutions for dark and singular optical solitons of Chen-Lee-Liu model by Adomian-based methods. (English) Zbl 07490029 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 98, 12 p. (2021). MSC: 65-XX 78-XX PDF BibTeX XML Cite \textit{A. S. H. F. Mohammed} and \textit{H. O. Bakodah}, Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 98, 12 p. (2021; Zbl 07490029) Full Text: DOI
Varsoliwala, Archana; Singh, Twinkle; Shah, Kunjan Hybrid approach for the study of concentration of the longitudinal dispersion phenomenon. (English) Zbl 1499.76118 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 233, 10 p. (2021). MSC: 76S05 65M99 PDF BibTeX XML Cite \textit{A. Varsoliwala} et al., Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 233, 10 p. (2021; Zbl 1499.76118) Full Text: DOI
Dash, R. K.; Mishra, S. R.; Sharma, Ram Prakash Squeezing flow analysis of AA7072-water and AA7075-water nanofluids with dissipative energy. (English) Zbl 1487.76095 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 229, 14 p. (2021). MSC: 76T20 76W05 76M99 PDF BibTeX XML Cite \textit{R. K. Dash} et al., Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 229, 14 p. (2021; Zbl 1487.76095) Full Text: DOI
Shabibi, Mehdi; Charandabi, Zohreh Zeinalabedini; Mohammadi, Hakimeh; Rezapour, Shahram Investigation of mathematical model of human liver by Caputo fractional derivative approach. (Persian. English summary) Zbl 1485.92030 JAMM, J. Adv. Math. Model. 11, No. 4, 750-760 (2021). MSC: 92C30 26A33 PDF BibTeX XML Cite \textit{M. Shabibi} et al., JAMM, J. Adv. Math. Model. 11, No. 4, 750--760 (2021; Zbl 1485.92030) Full Text: DOI
Hamoud, Ahmed A.; Mohammed, Nedal M.; Ghadle, Kirtiwant P. Some powerful techniques for solving nonlinear Volterra-Fredholm integral equations. (English) Zbl 1492.65360 J. Appl. Nonlinear Dyn. 10, No. 3, 461-469 (2021). MSC: 65R20 45D05 45B05 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Appl. Nonlinear Dyn. 10, No. 3, 461--469 (2021; Zbl 1492.65360) Full Text: DOI
Ali, Amir; Gul, Zamin; Khan, Wajahat Ali; Ahmad, Saeed; Zeb, Salman Investigation of fractional order sine-Gordon equation using Laplace Adomian decomposition method. (English) Zbl 1482.35240 Fractals 29, No. 5, Article ID 2150121, 10 p. (2021). MSC: 35R11 35A22 35K58 PDF BibTeX XML Cite \textit{A. Ali} et al., Fractals 29, No. 5, Article ID 2150121, 10 p. (2021; Zbl 1482.35240) Full Text: DOI
Alghamdi, A. S.; Alzaidy, J. F.; Hussain, A. K. Numerical approach of nonlinear fractional initial value problems by combination of the two methods: Adomian decomposition method and Jacobi spectral collocation. (English) Zbl 1499.34092 J. Fract. Calc. Appl. 12, No. 3, Article 9, 10 p. (2021). MSC: 34A12 34A45 65L05 34A08 PDF BibTeX XML Cite \textit{A. S. Alghamdi} et al., J. Fract. Calc. Appl. 12, No. 3, Article 9, 10 p. (2021; Zbl 1499.34092) Full Text: Link
Yang, Kaijun; Zhu, Guchuan A dynamic compensator for in-domain control of Burgers’ equation. (English) Zbl 1480.93202 Int. J. Control 94, No. 7, 1920-1930 (2021). MSC: 93C20 93B52 93C10 PDF BibTeX XML Cite \textit{K. Yang} and \textit{G. Zhu}, Int. J. Control 94, No. 7, 1920--1930 (2021; Zbl 1480.93202) Full Text: DOI
Li, Dandan; Yin, Shan Approximate solution of viscous heating in plane Couette flow. (Chinese. English summary) Zbl 1488.65725 Math. Pract. Theory 51, No. 15, 203-208 (2021). MSC: 65N99 80A19 35Q35 PDF BibTeX XML Cite \textit{D. Li} and \textit{S. Yin}, Math. Pract. Theory 51, No. 15, 203--208 (2021; Zbl 1488.65725)
Zhang, Juan; Yang, Jiying Exact solutions of a class of Klein-Gordan equations. (Chinese. English summary) Zbl 1488.35456 J. Qufu Norm. Univ., Nat. Sci. 47, No. 3, 7-12 (2021). MSC: 35Q40 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{J. Yang}, J. Qufu Norm. Univ., Nat. Sci. 47, No. 3, 7--12 (2021; Zbl 1488.35456)
Appadu, Appanah Rao; Kelil, Abey Sherif Comparison of modified ADM and classical finite difference method for some third-order and fifth-order KdV equations. (English) Zbl 1479.35733 Demonstr. Math. 54, 377-409 (2021). MSC: 35Q53 35A25 35A22 35B44 65M06 65N06 65M99 65M12 PDF BibTeX XML Cite \textit{A. R. Appadu} and \textit{A. S. Kelil}, Demonstr. Math. 54, 377--409 (2021; Zbl 1479.35733) Full Text: DOI
Umesh; Kumar, Manoj Approximate solution of singular IVPs of Lane-Emden type and error estimation via advanced Adomian decomposition method. (English) Zbl 1475.65218 J. Appl. Math. Comput. 66, No. 1-2, 527-542 (2021). MSC: 65N99 PDF BibTeX XML Cite \textit{Umesh} and \textit{M. Kumar}, J. Appl. Math. Comput. 66, No. 1--2, 527--542 (2021; Zbl 1475.65218) Full Text: DOI
Bhatti, Saira; Zahid, Muhammad; Ali, Rifaqat; Sarwar, Albesha; Wahab, Hafiz A. Blade coating analysis of a viscoelastic Carreau fluid using Adomian decomposition method. (English) Zbl 07431536 Math. Comput. Simul. 190, 659-677 (2021). MSC: 76-XX 74-XX PDF BibTeX XML Cite \textit{S. Bhatti} et al., Math. Comput. Simul. 190, 659--677 (2021; Zbl 07431536) Full Text: DOI
Jafarimoghaddam, A.; Roşca, N. C.; Roşca, A. V.; Pop, I. The universal Blasius problem: new results by Duan-Rach Adomian decomposition method with Jafarimoghaddam contraction mapping theorem and numerical solutions. (English) Zbl 07428947 Math. Comput. Simul. 187, 60-76 (2021). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{A. Jafarimoghaddam} et al., Math. Comput. Simul. 187, 60--76 (2021; Zbl 07428947) Full Text: DOI
Zhou, Jianrong; Xu, Yongzhi; Li, Heng Another way of solving a free boundary problem related to DCIS model. (English) Zbl 1477.35320 Appl. Anal. 100, No. 15, 3244-3258 (2021). MSC: 35R35 35K05 35K20 35Q92 PDF BibTeX XML Cite \textit{J. Zhou} et al., Appl. Anal. 100, No. 15, 3244--3258 (2021; Zbl 1477.35320) Full Text: DOI
Attia, Raghda A. M.; Baleanu, Dumitru; Lu, Dianchen; Khater, Mostafa M. A.; Ahmed, El-Sayed Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. (English) Zbl 1471.92238 Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3459-3478 (2021). MSC: 92D20 92-10 35C07 65D07 PDF BibTeX XML Cite \textit{R. A. M. Attia} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 10, 3459--3478 (2021; Zbl 1471.92238) Full Text: DOI
Bougoffa, Lazhar; Rach, Randolph C.; Mennouni, Abdelaziz On the existence, uniqueness, and new analytic approximate solution of the modified error function in two-phase Stefan problems. (English) Zbl 1472.35463 Math. Methods Appl. Sci. 44, No. 14, 10948-10956 (2021). MSC: 35R35 80A22 34B15 34B08 PDF BibTeX XML Cite \textit{L. Bougoffa} et al., Math. Methods Appl. Sci. 44, No. 14, 10948--10956 (2021; Zbl 1472.35463) Full Text: DOI
Zeidan, Dia; Chau, Chi Kin; Lu, Tzon-Tzer On the characteristic Adomian decomposition method for the Riemann problem. (English) Zbl 1471.35007 Math. Methods Appl. Sci. 44, No. 10, 8097-8112 (2021). MSC: 35A22 35L02 35Q15 65M25 PDF BibTeX XML Cite \textit{D. Zeidan} et al., Math. Methods Appl. Sci. 44, No. 10, 8097--8112 (2021; Zbl 1471.35007) Full Text: DOI
Verma, Amit Kumar; Pandit, Biswajit; Agarwal, Ravi P. On multiple solutions for a fourth order nonlinear singular boundary value problems arising in epitaxial growth theory. (English) Zbl 1480.34031 Math. Methods Appl. Sci. 44, No. 7, 5418-5435 (2021). Reviewer: J. Peter Praveen (Guntur) MSC: 34B16 34A45 34B27 PDF BibTeX XML Cite \textit{A. K. Verma} et al., Math. Methods Appl. Sci. 44, No. 7, 5418--5435 (2021; Zbl 1480.34031) Full Text: DOI
Khater, Mostafa M. A.; Bekir, Ahmet; Lu, Dianchen; Attia, Raghda A. M. Analytical and semi-analytical solutions for time-fractional Cahn-Allen equation. (English) Zbl 1470.35114 Math. Methods Appl. Sci. 44, No. 3, 2682-2691 (2021). MSC: 35C07 35C08 35K57 65J15 83C15 PDF BibTeX XML Cite \textit{M. M. A. Khater} et al., Math. Methods Appl. Sci. 44, No. 3, 2682--2691 (2021; Zbl 1470.35114) Full Text: DOI
Yan, Bo; He, Shaobo Dynamics and complexity analysis of the conformable fractional-order two-machine interconnected power system. (English) Zbl 1471.34104 Math. Methods Appl. Sci. 44, No. 3, 2439-2454 (2021). MSC: 34C60 34A08 34A45 34D45 34D05 34C23 34D08 34C28 PDF BibTeX XML Cite \textit{B. Yan} and \textit{S. He}, Math. Methods Appl. Sci. 44, No. 3, 2439--2454 (2021; Zbl 1471.34104) Full Text: DOI
Khalouta, A.; Kadem, A. A new combination method for solving nonlinear Liouville-Caputo and Caputo-Fabrizio time-fractional reaction-diffusion-convection equations. (English) Zbl 1480.65311 Malays. J. Math. Sci. 15, No. 2, 199-215 (2021). MSC: 65M99 26A33 35R11 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, Malays. J. Math. Sci. 15, No. 2, 199--215 (2021; Zbl 1480.65311) Full Text: Link
Lichae, Bijan Hasani; Biazar, Jafar; Ayati, Zainab Asymptotic decomposition method for fractional order Riccati differential equation. (English) Zbl 1474.65262 Comput. Methods Differ. Equ. 9, No. 1, 63-78 (2021). MSC: 65L99 34A08 PDF BibTeX XML Cite \textit{B. H. Lichae} et al., Comput. Methods Differ. Equ. 9, No. 1, 63--78 (2021; Zbl 1474.65262) Full Text: DOI
Silva, M. I.; De Bortoli, A. L. Development of a model for the process of anaerobic digestion and its solution by the modified Adomian decomposition method. (English) Zbl 1466.92117 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 5, 14 p. (2021). MSC: 92C75 92C45 65L99 PDF BibTeX XML Cite \textit{M. I. Silva} and \textit{A. L. De Bortoli}, Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 5, 14 p. (2021; Zbl 1466.92117) Full Text: DOI
Aydın, Derya; Şahin, Serpil Solutions of linear parabolic equations with homotopy perturbation method. (English) Zbl 1462.35018 Palest. J. Math. 10, No. 1, 120-127 (2021). MSC: 35A35 35K05 65M06 PDF BibTeX XML Cite \textit{D. Aydın} and \textit{S. Şahin}, Palest. J. Math. 10, No. 1, 120--127 (2021; Zbl 1462.35018) Full Text: Link
El-Kalla, Ibrahim L.; Mohamed, E. M.; El-Saka, Hala A. A. An accelerated solution for some classes of nonlinear partial differential equations. (English) Zbl 1460.35076 J. Egypt. Math. Soc. 29, Paper No. 7, 11 p. (2021). MSC: 35G20 35A01 35A02 35A25 35A35 PDF BibTeX XML Cite \textit{I. L. El-Kalla} et al., J. Egypt. Math. Soc. 29, Paper No. 7, 11 p. (2021; Zbl 1460.35076) Full Text: DOI
Mak, Man Kwong; Leung, Chun Sing; Harko, Tiberiu The effects of the dark energy on the static Schrödinger-Newton system – an Adomian decomposition method and Padé approximants based approach. (English) Zbl 1456.81458 Mod. Phys. Lett. A 36, No. 6, Article ID 2150038, 13 p. (2021). MSC: 81V17 81Q05 83C56 PDF BibTeX XML Cite \textit{M. K. Mak} et al., Mod. Phys. Lett. A 36, No. 6, Article ID 2150038, 13 p. (2021; Zbl 1456.81458) Full Text: DOI arXiv
Ismael, Hajar Farhan; Bulut, Hasan; Baskonus, Haci Mehmet; Gao, Wei Newly modified method and its application to the coupled Boussinesq equation in ocean engineering with its linear stability analysis. (English) Zbl 07737471 Commun. Theor. Phys. 72, No. 11, Article ID 115002, 8 p. (2020). MSC: 65M55 65M12 35Q35 35Q51 86A05 PDF BibTeX XML Cite \textit{H. F. Ismael} et al., Commun. Theor. Phys. 72, No. 11, Article ID 115002, 8 p. (2020; Zbl 07737471) Full Text: DOI
Cherif, M.; Ziane, D.; Alomari, A. K.; Belghaba, K. Solving the \((1+n)\)-dimensional fractional Burgers equation by natural decomposition method. (Russian. English summary) Zbl 1501.35009 Sib. Zh. Vychisl. Mat. 23, No. 4, 441-455 (2020). MSC: 35A22 35A08 35K58 35R11 44A10 44A20 34K37 26A33 PDF BibTeX XML Cite \textit{M. Cherif} et al., Sib. Zh. Vychisl. Mat. 23, No. 4, 441--455 (2020; Zbl 1501.35009) Full Text: DOI MNR
Zeb, Anwar; Nazir, Ghazala; Shah, Kamal; Alzahrani, Ebraheem Theoretical and semi-analytical results to a biological model under Atangana-Baleanu-Caputo fractional derivative. (English) Zbl 1487.92056 Adv. Difference Equ. 2020, Paper No. 654, 11 p. (2020). MSC: 92D30 26A33 34A08 PDF BibTeX XML Cite \textit{A. Zeb} et al., Adv. Difference Equ. 2020, Paper No. 654, 11 p. (2020; Zbl 1487.92056) Full Text: DOI
Hajira, Hajira; Khan, Hassan; Khan, Adnan; Kumam, Poom; Baleanu, Dumitru; Arif, Muhammad An approximate analytical solution of the Navier-Stokes equations within Caputo operator and Elzaki transform decomposition method. (English) Zbl 1487.35403 Adv. Difference Equ. 2020, Paper No. 622, 22 p. (2020). MSC: 35R11 65R20 65M70 45K05 26A33 PDF BibTeX XML Cite \textit{H. Hajira} et al., Adv. Difference Equ. 2020, Paper No. 622, 22 p. (2020; Zbl 1487.35403) Full Text: DOI
Odibat, Zaid An optimized decomposition method for nonlinear ordinary and partial differential equations. (English) Zbl 07527037 Physica A 541, Article ID 123323, 13 p. (2020). MSC: 82-XX PDF BibTeX XML Cite \textit{Z. Odibat}, Physica A 541, Article ID 123323, 13 p. (2020; Zbl 07527037) Full Text: DOI
Ayata, Muammer; Özkan, Ozan A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation. (English) Zbl 1484.35373 AIMS Math. 5, No. 6, 7402-7412 (2020). MSC: 35R11 26A24 PDF BibTeX XML Cite \textit{M. Ayata} and \textit{O. Özkan}, AIMS Math. 5, No. 6, 7402--7412 (2020; Zbl 1484.35373) Full Text: DOI
Ahmad, S.; Ullah, A.; Shah, K.; Salahshour, S.; Ahmadian, A.; Ciano, T. Fuzzy fractional-order model of the novel coronavirus. (English) Zbl 1486.92194 Adv. Difference Equ. 2020, Paper No. 472, 17 p. (2020). MSC: 92D30 34A08 26A33 34A07 03E72 PDF BibTeX XML Cite \textit{S. Ahmad} et al., Adv. Difference Equ. 2020, Paper No. 472, 17 p. (2020; Zbl 1486.92194) Full Text: DOI
Owyed, Saud; Abdou, M. A.; Abdel-Aty, Abdel-Haleem; Alharbi, W.; Nekhili, Ramzi Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method. (English) Zbl 1495.35197 Chaos Solitons Fractals 131, Article ID 109474, 5 p. (2020). MSC: 35R11 65M55 26A33 PDF BibTeX XML Cite \textit{S. Owyed} et al., Chaos Solitons Fractals 131, Article ID 109474, 5 p. (2020; Zbl 1495.35197) Full Text: DOI
Günerhan, Hatıra; Dutta, Hemen; Dokuyucu, Mustafa Ali; Adel, Waleed Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators. (English) Zbl 1490.92086 Chaos Solitons Fractals 139, Article ID 110053, 19 p. (2020). MSC: 92D30 92C60 26A33 PDF BibTeX XML Cite \textit{H. Günerhan} et al., Chaos Solitons Fractals 139, Article ID 110053, 19 p. (2020; Zbl 1490.92086) Full Text: DOI
Osman, Mawia; Gong, Zengtai; Mustafa, Altyeb Mohammed Comparison of fuzzy Adomian decomposition method with fuzzy VIM for solving fuzzy heat-like and wave-like equations with variable coefficients. (English) Zbl 1485.65111 Adv. Difference Equ. 2020, Paper No. 327, 42 p. (2020). MSC: 65M99 35R13 26E50 03E72 PDF BibTeX XML Cite \textit{M. Osman} et al., Adv. Difference Equ. 2020, Paper No. 327, 42 p. (2020; Zbl 1485.65111) Full Text: DOI
Aydogan, Seher Melike; Baleanu, Dumitru; Mohammadi, Hakimeh; Rezapour, Shahram On the mathematical model of Rabies by using the fractional Caputo-Fabrizio derivative. (English) Zbl 1485.34025 Adv. Difference Equ. 2020, Paper No. 382, 21 p. (2020). MSC: 34A08 26A33 45J05 34K37 PDF BibTeX XML Cite \textit{S. M. Aydogan} et al., Adv. Difference Equ. 2020, Paper No. 382, 21 p. (2020; Zbl 1485.34025) Full Text: DOI
Khan, Hassan; Shah, Rasool; Kumam, Poom; Baleanu, Dumitru; Arif, Muhammad Laplace decomposition for solving nonlinear system of fractional order partial differential equations. (English) Zbl 1485.65109 Adv. Difference Equ. 2020, Paper No. 375, 18 p. (2020). MSC: 65M70 35R11 26A33 PDF BibTeX XML Cite \textit{H. Khan} et al., Adv. Difference Equ. 2020, Paper No. 375, 18 p. (2020; Zbl 1485.65109) Full Text: DOI
O, KyuNam; Jong, KumSong; Pak, SunAe; Choi, HuiChol A new approach to approximate solutions for a class of nonlinear multi-term fractional differential equations with integral boundary conditions. (English) Zbl 1482.34032 Adv. Difference Equ. 2020, Paper No. 271, 16 p. (2020). MSC: 34A08 26A33 34B15 34B10 65L05 PDF BibTeX XML Cite \textit{K. O} et al., Adv. Difference Equ. 2020, Paper No. 271, 16 p. (2020; Zbl 1482.34032) Full Text: DOI