×

Cooperative strategies for two-evader-one-pursuer reach-avoid differential games. (English) Zbl 1483.91045

Summary: A reach-avoid differential game with two evaders and one pursuer is considered in the plane which is divided into a play region and a goal region by a straight line. Two evaders, starting from the play region, aim at reaching the goal region protected by the faster pursuer who tries to capture the evaders. This game is analysed from kind and degree in analytical forms. The information structure involves that the evaders know which one is being pursued by the pursuer while the pursuer has access to the evaders’ current control inputs. We are concerned with the barrier and winning regions, by which the number of evaders reaching the goal region before being captured can be determined. Cooperative strategies for two evaders are derived based on the goal priority between team goal and individual goal. An Apollonius circle based pursuit strategy is explicitly proposed. The \(\delta\)-Apollonius circle is introduced to handle with the pursuit of the second-pursued evader. When two evaders are both possible to be captured, motivated by the cooperation between two prey animals against a predator, an aiding strategy is proposed such that one evader sacrifices itself to help the other’s evasion. Numerical simulations are presented.

MSC:

91A24 Positional games (pursuit and evasion, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bakolas, E.; Tsiotras, P., Relay pursuit of a maneuvering target using dynamic Voronoi diagrams, Automatica, 48, 9, 2213-2220 (2012) · Zbl 1257.93003 · doi:10.1016/j.automatica.2012.06.003
[2] Başar, T.; Olsder, G. J., Dynamic noncooperative game theory (1999), SIAM · Zbl 0946.91001
[3] Bopardikar, S. D.; Smith, S. L.; Bullo, F., On vehicle placement to intercept moving targets, Automatica, 47, 9, 2067-2074 (2011) · Zbl 1229.93163 · doi:10.1016/j.automatica.2011.06.010
[4] Chen, M.; Herbert, S.; Tomlin, C. J., Exact and efficient Hamilton-Jacobi guaranteed safety analysis via systemdecomposition (2017)
[5] Chen, P.; Sastry, S., Pursuit controller performance guarantees for a lifeline pursuit-evasion game over a wireless sensor network (2006)
[6] Chen, M.; Zhou, Z.; Tomlin, C. J., Multiplayer reach-avoid games via pairwise outcomes, IEEE Transactions on Automatic Control, 62, 3, 1451-1457 (2017) · Zbl 1366.91020 · doi:10.1109/TAC.2016.2577619
[7] Chikrii, A. A.; Kalashnikova, S. F., Pursuit of a group of evaders by a single controlled object, Cybernetics, 23, 4, 437-445 (19871) · Zbl 0648.90109 · doi:10.1007/BF01078897
[8] Dong, X.; Hua, Y.; Zhou, Y.; Ren, Z.; Zhong, Y., Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems, IEEE Transactions on Automation Science and Engineering, 16, 1, 229-240 (2019) · doi:10.1109/TASE.2018.2792327
[9] Dutkevich, Y.; Petrosyan, L., Games with a “Life-line”. The case of l-capture, SIAM Journal on Control, 10, 1, 40-47 (1972) · Zbl 0234.90076 · doi:10.1137/0310004
[10] Elliott, R. J.; Kalton, N. J., The existence of value in differential games, 126 (1972), American Mathematical Soc · Zbl 0262.90076
[11] Fisac, J. F.; Chen, M.; Tomlin, C. J.; Sastry, S. S., Reach-avoid problems with time-varying dynamics, targets and constraints (2015) · Zbl 1364.49048
[12] Garcia, E.; Moll, A. V.; Casbeer, D. W.; Pachter, M., Strategies for defending a coastline against multiple attackers (2019)
[13] Hayoun, S. Y.; Shima, T., On guaranteeing point capture in linear n-on-1 endgame interception engagements with bounded controls, Automatica, 85, 122-128 (2017) · Zbl 1376.49050 · doi:10.1016/j.automatica.2017.07.054
[14] Huang, H.; Ding, J.; Zhang, W.; Tomlin, C. J., Automation-assisted capture-the-flag: A differential game approach, IEEE Transactions on Control Systems Technology, 23, 3, 1014-1028 (2015) · doi:10.1109/TCST.2014.2360502
[15] Isaacs, R., Differential games (1967), Wiley · Zbl 0152.38407
[16] Kariotoglou, N.; Kamgarpour, M.; Summers, T. H.; Lygeros, J., The linear programming approach to reach-avoid problems for Markov decision processes, Journal of Artificial Intelligence Research, 60, 263-285 (2017) · Zbl 1427.90286 · doi:10.1613/jair.5500
[17] Kawęcki, P.; Kraska, B.; Majcherek, K.; Zola, M., Guarding a line segment, Systems & Control Letters, 58, 7, 540-545 (2009) · Zbl 1166.49037 · doi:10.1016/j.sysconle.2009.03.003
[18] Kothari, M.; Manathara, J. G.; Postlethwaite, I., Cooperative multiple pursuers against a single evader, Journal of Intelligent & Robotic Systems, 86, 3, 551-567 (2017) · doi:10.1007/s10846-016-0423-3
[19] Liu, S.; Zhou, Z.; Tomlin, C.; Hedrick, J. K., Evasion of a team of dubins vehicles from a hidden pursuer (2014)
[20] Margellos, K.; Lygeros, J., Hamilton-Jacobi formulation for reach-avoid differential games, IEEE Transactions on Automatic Control, 56, 8, 1849-1861 (2011) · Zbl 1368.49044 · doi:10.1109/TAC.2011.2105730
[21] Mitchell, I. M.; Bayen, A. M.; Tomlin, C. J., A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games, IEEE Transactions on Automatic Control, 50, 7, 947-957 (2005) · Zbl 1366.91022 · doi:10.1109/TAC.2005.851439
[22] Mohanan, J.; Manikandasriram, S. R.; Venkatesan, R. H.; Bhikkaji, B., Toward real-time autonomous target area protection: Theory and implementation, IEEE Transactions on Control Systems Technology, 27(3), 1293-1300 (2019) · doi:10.1109/TCST.2018.2805295
[23] Mylvaganam, T.; Sassano, M.; Astolfi, A., A differential game approach to multi-agent collision avoidance, IEEE Transactions on Automatic Control, 62, 8, 4229-4235 (2017) · Zbl 1375.91034 · doi:10.1109/TAC.9
[24] Oyler, D. W.; Kabamba, P. T.; Girard, A. R., Pursuit-evasion games in the presence of obstacles, Automatica, 65, 1-11 (2016) · Zbl 1328.49038 · doi:10.1016/j.automatica.2015.11.018
[25] Pierson, A.; Wang, Z.; Schwager, M., Intercepting rogue robots: An algorithm for capturing multiple evaders with multiple pursuers, IEEE Robotics and Automation Letters, 2, 2, 530-537 (2017) · doi:10.1109/LRA.2016.2645516
[26] Raboin, E.; Švec, P.; Nau, D. S.; Gupta, S. K., Model-predictive asset guarding by team of autonomous surface vehicles in environment with civilian boats, Autonomous Robots, 38, 3, 261-282 (2015) · doi:10.1007/s10514-014-9409-9
[27] Scott, W. L.; Leonard, N. E., Optimal evasive strategies for multiple interacting agents with motion constraints, Automatica, 94, 26-34 (2018) · Zbl 1400.93213 · doi:10.1016/j.automatica.2018.04.008
[28] Shishika, D.; Paley, D. A., Mosquito-inspired distributed swarming and pursuit for cooperative defense against fast intruders, Autonomous Robots, 43, 7, 1781-1799 (2019) · doi:10.1007/s10514-018-09827-y
[29] Shishika, D.; Paulos, J.; Kumar, V., Cooperative team strategies for multi-player perimeter-defense games, IEEE Robotics and Automation Letters, 5, 2, 2738-2745 (2020) · doi:10.1109/LSP.2016.
[30] Yan, R., Duan, X., Shi, Z., Zhong, Y., & Bullo, F. (2019). Matching-based capture strategies for 3D heterogeneous multiplayer reach-avoid differential games. arXiv:1909.11881.
[31] Yan, R.; Shi, Z.; Zhong, Y., Defense game in a circular region (2017)
[32] Yan, R.; Shi, Z.; Zhong, Y., Optimal strategies for the lifeline differential game with limited lifetime, International Journal of Control, 1, 1, 1-14 (2019) · Zbl 1480.91050 · doi:10.1080/00207179.2019.1698770
[33] Yan, R.; Shi, Z.; Zhong, Y., Reach-avoid games with two defenders and one attacker: An analytical approach, IEEE Transactions on Cybernetics, 49, 3, 1035-1046 (2019) · doi:10.1109/TCYB.2018.2794769
[34] Yan, R.; Shi, Z.; Zhong, Y., Guarding a subspace in high-dimensional space with two defenders and one attacker, IEEE Transactions on Cybernetics, 1, 1, 1-14 (2020) · doi:10.1109/TCYB.2020.3015031
[35] Yan, R.; Shi, Z.; Zhong, Y., Task assignment for multiplayer reach-avoid games in convex domains via analytical barriers, IEEE Transactions on Robotics, 36, 1, 107-124 (2020) · doi:10.1109/TRO.8860
[36] Zhou, Z.; Takei, R.; Huang, H.; Tomlin, C. J., A general, open-loop formulation for reachavoid games (2012)
[37] Zhou, Z.; Zhang, W.; Ding, J.; Huang, H.; Stipanović, D. M.; Tomlin, C. J., Cooperative pursuit with Voronoi partitions, Automatica, 72, 64-72 (2016) · Zbl 1344.49065 · doi:10.1016/j.automatica.2016.05.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.