×

Stress constrained shape and topology optimization with fixed mesh: a B-spline finite cell method combined with level set function. (English) Zbl 1423.74741

Summary: In this paper, we develop an efficient and flexible design method that integrates the B-spline finite cell method (B-spline FCM) and the level set function (LSF) for stress constrained shape and topology optimization. Any structure of complex geometry is embedded within an extended, regular and fixed Eulerian mesh no matter how the structure is optimized. High-order B-spline shape functions are further implemented to ensure precisions of stress analysis and sensitivity analysis. Meanwhile, level set functions, i.e., implicit functions are used to enable topological changes of the considered structure through smooth boundary variations. Involved parameters rather than the conventional discrete form of LSF are directly taken as design variables to facilitate the numerical computing process. To be specific, the LSF is constructed by means of R-functions that incorporate cubic splines as implicit functions to offer flexibilities for shape optimization within the framework of fixed mesh, while the compactly supported radial basis functions (CS-RBFs) are employed as implicit functions for stress constrained topology optimization. It is shown the proposed FCM/LSF method is a convenient approach that makes it possible to calculate stress and stress sensitivities with high precision. Representative examples of shape and topology optimization with and without stress constraints are solved with success demonstrating the advantages of the FCM/LSF method.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
49Q12 Sensitivity analysis for optimization problems on manifolds
65K10 Numerical optimization and variational techniques
74S05 Finite element methods applied to problems in solid mechanics

Software:

BOSS-Quattro
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, J. Q.; Shapiro, V.; Suresh, K.; Tsukanov, I., Shape optimization with topological changes and parametric control, Internat. J. Numer. Methods Eng., 71, 313-346, (2007) · Zbl 1194.74236
[2] Van Miegroet, L., Generalized shape optimization using XFEM and level set description, (2012), University of Liege, (Ph.D. thesis)
[3] Kim, N. H.; Chang, Y. M., Eulerian shape design sensitivity analysis and optimization with a fixed grid, Comput. Methods Appl. Mech. Engrg., 194, 3291-3314, (2005) · Zbl 1137.74415
[4] Jang, G. W.; Kim, Y. Y., Sensitivity analysis for fixed-grid shape optimization by using oblique boundary curve approximation, Internat. J. Solids Struct., 42, 3591-3609, (2005) · Zbl 1127.74345
[5] Sethian, J. A., Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, (1999), Cambridge University Press · Zbl 0973.76003
[6] Osher, S.; Fedkiw, R., Level set methods and dynamic implicit surfaces, (2003), Springer · Zbl 1026.76001
[7] Sethian, J. A.; Wiegmann, A., Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 489-528, (2000) · Zbl 0994.74082
[8] Osher, S.; Santosa, F., Level set methods for optimization problems involving geometry and constraints: I. frequencies of a two-density inhomogeneous drum, J. Comput. Phys., 171, 272-288, (2001) · Zbl 1056.74061
[9] Wang, M. Y.; Wang, X. M.; Guo, D. M., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246, (2003) · Zbl 1083.74573
[10] Belytschko, T.; Xiao, S. P.; Parimi, C., Topology optimization with implicit functions and regularization, Internat. J. Numer. Methods Eng., 57, 1177-1196, (2003) · Zbl 1062.74583
[11] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393, (2004) · Zbl 1136.74368
[12] Shapiro, V., Theory of R-functions and applications: A primer, technical report, (1988), Cornell University
[13] V. Shapiro, I. Tsukanov, Implicit functions with guaranteed differential properties, in: Fifth ACM Symposium on Solid Modeling and Applications, Ann Arbor, MI, 1999, pp. 258-269.
[14] Fougerolle, Y. D.; Gribok, A.; Foufou, S.; Truchetet, F.; Abidi, M. A., Boolean operations with implicit and parametric representation of primitives using R-functions, IEEE Trans. Vis. Comput. Graphics, 11, 529-539, (2005)
[15] Van Miegroet, L.; Duysinx, P., Stress concentration minimization of 2D filets using X-FEM and level set description, Struct. Multidiscip. Optim., 33, 425-438, (2007)
[16] Duysinx, P.; Van Miegroet, L.; Lemaire, E.; Brüls, O.; Bruyneel, M., Topology and generalized shape optimization: why stress constraints are so important?, Int. J. Simul. Multidiscip. Design Optim., 2, 253-258, (2008)
[17] Cheng, G. D.; Guo, X., \(\varepsilon\)-relaxed approach in structural topology optimization, Struct. Optim., 13, 258-266, (1997)
[18] Wei, P.; Wang, M. Y.; Xing, X. H., A study on X-FEM in continuum structural optimization using a level set model, Comput.-Aided Des., 42, 708-719, (2010)
[19] Wang, S. Y.; Wang, M. Y., Radial basis functions and level set method for structural topology optimization, Internat. J. Numer. Methods Eng., 65, 2060-2090, (2006) · Zbl 1174.74331
[20] Luo, Z.; Wang, M. Y.; Wang, S. Y.; Wei, P., A level set-based parameterization method for structural shape and topology optimization, Internat. J. Numer. Methods Eng., 76, 1-26, (2008) · Zbl 1158.74443
[21] Zhang, J.; Zhang, W. H.; Zhu, J. H.; Xia, L., Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 245-246, 75-89, (2012) · Zbl 1354.74310
[22] Guo, X.; Zhang, W. S.; Wang, M. Y.; Wei, P., Stress-related topology optimization via level set approach, Comput. Methods Appl. Mech. Engrg., 200, 3439-3452, (2011) · Zbl 1230.74152
[23] París, J.; Navarrina, F.; Colominas, I.; Casteleiro, M., Topology optimization of continuum structures with local and global stress constraints, Struct. Multidiscip. Optim., 39, 419-437, (2009) · Zbl 1274.74375
[24] París, J.; Navarrina, F.; Colominas, I.; Casteleiro, M., Block aggregation of stress constraints in topology optimization of structures, Adv. Eng. Softw., 41, 433-441, (2010) · Zbl 1303.74033
[25] Luo, Y. J.; Wang, M. Y.; Kang, Z., An enhanced aggregation method for topology optimization with local stress constraints, Comput. Methods Appl. Mech. Engrg., 254, 31-41, (2013) · Zbl 1297.74098
[26] Holmberg, E.; Torstenfelt, B.; Klarbring, A., Stress constrained topology optimization, Struct. Multidiscip. Optim., 48, 33-47, (2013) · Zbl 1274.74341
[27] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 605-620, (2010)
[28] Zhang, W. S.; Guo, X.; Wang, M. Y.; Wei, P., Optimal topology design of continuum structures with stress concentration alleviation via level set method, Internat. J. Numer. Methods Eng., 93, 942-959, (2013) · Zbl 1352.74255
[29] Wang, M. Y.; Li, L., Shape equilibrium constraint: a strategy for stress-constrained structural topology optimization, Struct. Multidiscip. Optim., 47, 335-352, (2013) · Zbl 1274.74410
[30] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput. Mech., 41, 121-133, (2007) · Zbl 1162.74506
[31] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 3768-3782, (2008) · Zbl 1194.74517
[32] Parvizian, J.; Düster, A.; Rank, E., Topology optimization using the finite cell method, Optim. Eng., 13, 57-78, (2012) · Zbl 1293.74357
[33] Zander, N.; Kollmannsberger, S.; Ruess, M.; Yosibash, Z.; Rank, E., The finite cell method for linear thermoelasticity, Comput. Math. Appl., 3527-3541, (2012) · Zbl 1268.74020
[34] Yang, Z.; Ruess, M.; Kollmannsberger, S.; Düster, A.; Rank, E., An efficient integration technique for the voxel-based finite cell method, Internat. J. Numer. Methods Eng., 91, 457-471, (2012)
[35] Abedian, A.; Parvizian, J.; Düster, A.; Rank, E., The finite cell method for the \(J_2\) flow theory of plasticity, Finite Elem. Anal. Des., 69, 37-47, (2013)
[36] Schillinger, D.; Rank, E., An unfitted \(h p\)-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput. Methods Appl. Mech. Engrg., 200, 3358-3380, (2011) · Zbl 1230.74197
[37] Schillinger, D.; Ruess, M.; Zander, N.; Bazilevs, Y.; Düster, A.; Rank, E., Small and large deformation analysis with the p- and B-spline versions of the finite cell method, Comput. Mech., 50, 445-478, (2012) · Zbl 1398.74401
[38] Rank, E.; Ruess, M.; Kollmannsberger, S.; Schillinger, D.; Düster, A., Geometric modeling, isogeometric analysis and the finite cell method, Comput. Methods Appl. Mech. Engrg., 249, 104-115, (2012) · Zbl 1348.74340
[39] Schillinger, D.; Dede, L.; Scott, M. A.; Evans, J. A.; Borden, M. J.; Rank, E.; Hughes, T. J.R., An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249, 116-150, (2012) · Zbl 1348.65055
[40] Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method, Internat. J. Numer. Methods Eng., 48, 1741-1760, (2000) · Zbl 0989.74066
[41] Höllig, K.; Reif, U.; Wipper, J., Weighted extended B-spline approximation of Dirichlet problems, SIAM J. Numer. Anal., 39, 442-462, (2001) · Zbl 0996.65119
[42] Höllig, K.; Apprich, C.; Streit, A., Introduction to the web-method and its applications, Adv. Comput. Math., 23, 215-237, (2005) · Zbl 1070.65118
[43] Ramiere, I.; Angot, P.; Belliard, M., A fictitious domain approach with spread interface for elliptic problems with general boundary conditions, Comput. Methods Appl. Mech. Engrg., 196, 766-781, (2007) · Zbl 1121.65364
[44] Piegl, L. A.; Tiller, W., The NURBS book, (1997), Springer
[45] Kincaid, D. R.; Cheney, E. W., Numerical analysis: mathematics of scientific computing, (2002), American Mathematical Society
[46] K. Svanberg, A globally convergent version of MMA without linesearch, in: First World Congress of Structural and Multidisciplinary Optimization, Goslar, Germany, 1995, pp. 9-16.
[47] Radovcic, Y.; Remouchamps, A., BOSS QUATTRO: an open system for parametric design, Struct. Multidiscip. Optim., 23, 140-152, (2002)
[48] Bennett, J. A.; Botkin, M. E., Structural shape optimization with geometric description and adaptive mesh refinement, AIAA J., 23, 458-464, (1985)
[49] Zhang, W. H.; Beckers, P.; Fleury, C., A unified parametric design approach to structural shape optimization, Internat. J. Numer. Methods Eng., 38, 2283-2292, (1995) · Zbl 0854.73040
[50] Alexandrov, O.; Santosa, F., A topology-preserving level set method for shape optimization, J. Comput. Phys., 204, 121-130, (2005) · Zbl 1075.65089
[51] Gao, T.; Zhang, W. H., A mass constraint formulation for structural topology optimization with multiphase materials, Internat. J. Numer. Methods Eng., 88, 774-796, (2011) · Zbl 1242.74070
[52] Wang, D.; Zhang, W. H., A bispace parameterization method for shape optimization of thin-walled curved shell structures with openings, Internat. J. Numer. Methods Eng., 90, 1598-1617, (2012) · Zbl 1246.74041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.