×

Reasoning in BDI agents using Toulmin’s argumentation model. (English) Zbl 1436.68371

Summary: The theory of argumentation pervades several fields of knowledge, and it has gained significant space in multiagent systems because it provides a way for modeling reasoning over conflicting information in intelligent agents. This work proposes the development of an argumentation-based inference mechanism for BDI agents based on Toulmin’s model of argumentation. The philosopher Stephen Toulmin claimed that arguments typically consist of six parts: data, warrant, claim, backing, qualifier, and rebuttal. This argumentation structure allows arguments to be described through separated components, making it easier to define and to evaluate the inference process. By presenting and discussing some case studies, this paper shows how this mechanism supports the inference of new beliefs based on available evidence within BDI agents programmed in an agent-oriented programming language.

MSC:

68T42 Agent technology and artificial intelligence

Software:

Jason
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Dung, P. M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. Intell., 77, 2, 321-357 (1995) · Zbl 1013.68556
[2] Prakken, H.; Sartor, G., Argument-based extended logic programming with defeasible priorities, J. Appl. Non-Class. Log., 7, 1-2, 25-75 (1997) · Zbl 0877.68019
[3] Rahwan, I.; Ramchurn, S. D.; Jennings, N. R.; Mcburney, P.; Parsons, S.; Sonenberg, L., Argumentation-based negotiation, Knowl. Eng. Rev., 18, 4, 343-375 (2003)
[4] Ferber, J.; Gasser, L., Intelligence artificielle distribuée, (Tutorial Notes of the 11th Conference on Expert Systems and Their Applications. Tutorial Notes of the 11th Conference on Expert Systems and Their Applications, France (1991))
[5] Rezende, S. O., Sistemas Inteligentes: fundamentos e aplicações (2003), Editora Manole Ltda: Editora Manole Ltda Barueri, SP
[6] Wooldridge, M., An Introduction to Multiagent Systems (2009), John Wiley & Sons
[7] Rao, A. S.; Georgeff, M. P., BDI agents: from theory to practice, (ICMAS 95 (1995)), 312-319
[8] Bratman, M., Intention, Plans, and Practical Reason (1987), Center for the Study of Language and Information
[9] Sierra, C.; Jennings, N.; Noriega, P.; Parsons, S., A framework for argumentation-based negotiation, (Intelligent Agents IV Agent Theories, Architectures, and Languages (1998)), 177-192
[10] Moulin, B.; Irandoust, H.; Bélanger, M.; Desbordes, G., Explanation and argumentation capabilities: towards the creation of more persuasive agents, Artif. Intell. Rev., 17, 3, 169-222 (2002) · Zbl 1017.68112
[11] Kakas, A.; Moraitis, P., Argumentation based decision making for autonomous agents, (Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (2003), ACM), 883-890
[12] Atkinson, K.; Bench-Capon, T.; McBurney, P., Generating intentions through argumentation, (Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (2005), ACM), 1261-1262
[13] Atkinson, K.; Bench-Capon, T.; Mcburney, P., A dialogue game protocol for multi-agent argument over proposals for action, Auton. Agents Multi-Agent Syst., 11, 2, 153-171 (2005) · Zbl 1117.68504
[14] Maudet, N.; Parsons, S.; Rahwan, I., Argumentation in multi-agent systems: context and recent developments, (International Workshop on Argumentation in Multi-Agent Systems (2006), Springer), 1-16
[15] Oliva, E.; McBurney, P.; Omicini, A., Co-argumentation artifact for agent societies, (International Workshop on Argumentation in Multi-Agent Systems (2007), Springer), 31-46 · Zbl 1135.68588
[16] Panisson, A. R.; Meneguzzi, F.; Vieira, R.; Bordini, R. H., An approach for argumentation-based reasoning using defeasible logic in multi-agent programming languages, (11th International Workshop on Argumentation in Multiagent Systems (2014)), 1-15
[17] Berariu, T., An argumentation framework for BDI agents, (Intelligent Distributed Computing VII (2014), Springer), 343-354
[18] Panisson, A. R.; Bordini, R. H., Knowledge representation for argumentation in agent-oriented programming languages, (2016 5th Brazilian Conference on Intelligent Systems. 2016 5th Brazilian Conference on Intelligent Systems, BRACIS (2016), IEEE), 13-18
[19] Velmovitsky, P. E.; Briot, J.-P.; Viana, M.; de Lucena, C. J.P., Practical reasoning in an argumentation-based decision BDI agent: a case study for participatory management of protected areas, (29th International Conference on Software Engineering & Knowledge Engineering. 29th International Conference on Software Engineering & Knowledge Engineering, SEKE’2017 (2017), SEKE/Knowledge Systems Institute), 527-530
[20] Ferretti, E.; Tamargo, L. H.; García, A. J.; Errecalde, M. L.; Simari, G. R., An approach to decision making based on dynamic argumentation systems, Artif. Intell., 242, 107-131 (2017) · Zbl 1392.68384
[21] Hecham, A.; Bisquert, P.; Croitoru, M., On a flexible representation for defeasible reasoning variants, (Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems. Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018, IFAAMAS (2018)), 1123-1131
[22] Areli, O.; Borg, A. M.; Straber, C., Prioritized sequent-based argumentation, (Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems. Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018 (2018), IFAAMAS), 1105-1113
[23] Toulmin, S. E., The Uses of Argument (2003), Cambridge University Press
[24] Verheij, B., The Toulmin argument model in artificial intelligence, (Argumentation in Artificial Intelligence (2009), Springer), 219-238
[25] de Oliveira Gabriel, V.; Adamatti, D. F.; Panisson, A. R.; Bordini, R. H.; Billa, C. Z., Argumentation-based reasoning in BDI agents using Toulmin’s model, (2018 7th Brazilian Conference on Intelligent Systems. 2018 7th Brazilian Conference on Intelligent Systems, BRACIS (2018), IEEE), 378-383
[26] Bordini, R. H.; Hübner, J. F.; Wooldridge, M., Programming Multi-Agent Systems in AgentSpeak Using Jason, vol. 8 (2007), John Wiley & Sons · Zbl 1132.68021
[27] Chesñevar, C. I.; Maguitman, A. G.; Loui, R. P., Logical models of argument, ACM Comput. Surv., 32, 4, 337-383 (2000)
[28] Hitchcock, D., Good reasoning on the Toulmin model, Argumentation, 19, 3, 373-391 (2005)
[29] Georgeff, M. P.; Lansky, A. L., Procedural knowledge, Proc. IEEE, 74, 10, 1383-1398 (1986)
[30] Narvaez, F.; Gutierrez, G.; Pérez, M. A.; Elizondo, D.; Nuñez, A.; Balmaseda, A.; Harris, E., Evaluation of the traditional and revised who classifications of dengue disease severity, PLoS Negl. Trop. Dis., 5, 11, Article e1397 pp. (2011)
[31] Ministério da Saúde (BR), Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissíveis, Dengue: Diagnóstico e Manejo Clínico: Adulto e Criança (2013)
[32] Bondarenko, A.; Dung, P. M.; Kowalski, R. A.; Toni, F., An abstract, argumentation-theoretic approach to default reasoning, Artif. Intell., 93, 1-2, 63-101 (1997) · Zbl 1017.03511
[33] Atkinson, K.; Bench-Capon, T., Practical reasoning as presumptive argumentation using action based alternating transition systems, Artif. Intell., 171, 10-15, 855-874 (2007) · Zbl 1168.68558
[34] Rotstein, N. D.; García, A. J.; Simari, G. R., Defeasible argumentation support for an extended BDI architecture, (International Workshop on Argumentation in Multi-Agent Systems (2007), Springer), 145-163 · Zbl 1135.68592
[35] Parsonsa, S.; Atkinsonb, K.; Haighc, K.; Levittd, K.; Rowed, P. M.J.; Singhf, M. P.; Sklara, E., Argument schemes for reasoning about trust, (Computational Models of Argument: Proceedings of COMMA 2012, vol. 245 (2012)), 430
[36] Rotstein, N. D.; Moguillansky, M. O.; García, A. J.; Simari, G. R., A dynamic argumentation framework, (COMMA, vol. 216 (2010)), 427-438
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.