×

Multi-region adaptive finite element-boundary element method for elasto-plastic analysis. (English) Zbl 1255.74062

Summary: In this paper, a multi-region adaptive finite element-boundary element (FEM-BEM) method for elasto-plastic analysis is presented. The method is suitable for several plasticity models, i.e. von-Mises, Tresca, Mohr-Coulomb, Drucker-Prager, Hill, and Hoffman yield criteria. The domain of the original problem is divided into the finite element and the boundary element sub-domains: the FEM is utilized in regions where plastic material behaviour is expected to develop, whereas the complementary linear elastic region is approximated using the symmetric Galerkin BEM. The adaptive method estimates the finite element and boundary element sub-domains, automatically generates the corresponding meshes and adapts the sub-domains, according to the state of computation.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1002/nme.1620190408 · Zbl 0508.73075
[2] Beer G., Boundary Element Methods pp 575– (1981)
[3] DOI: 10.1016/0307-904X(79)90053-2 · Zbl 0406.73009
[4] DOI: 10.1016/0965-9978(95)00055-0 · Zbl 1074.65529
[5] DOI: 10.1093/imanum/17.2.201 · Zbl 0872.65100
[6] DOI: 10.1016/S0377-0427(96)00090-8 · Zbl 0862.73059
[7] DOI: 10.1007/3-540-31761-9_20 · Zbl 1194.74212
[8] Costabel M., Boundary Elements IX pp 411– (1987)
[9] DOI: 10.1137/0727070 · Zbl 0725.73090
[10] DOI: 10.1216/JIE-1990-2-2-211 · Zbl 0694.73008
[11] DIANA finite element analysis user’s manual release 9.4.3, TNO DIANA BV, Delft, The Netherlands, 2010. Available atwww.tnodiana.com.
[12] DOI: 10.1016/S0045-7825(02)00405-X · Zbl 1027.65139
[13] Elleithy, W. 2007. Interface relaxation FEM–BEM coupling: dynamic procedures of determining the relaxation parameters. 6th Alexandria International Conference on Structural and Geotechnical Engineering (AICSGE6). April2007, Alexandria, Egypt. pp.ST1–ST15.
[14] DOI: 10.1016/j.cma.2008.02.018 · Zbl 1194.74388
[15] Elleithy, W. 2009. Adaptive coupled finite element–boundary element method for elasto-plastic analysis. 7th UK Conference on Boundary Integral Methods. July2009, Nottingham, UK. pp.67–80.
[16] DOI: 10.1016/S0955-7997(01)00054-6 · Zbl 1003.74501
[17] DOI: 10.1002/nme.2608 · Zbl 1171.74440
[18] Elleithy, W. and Langer, U. 2007. Adaptive FEM–BEM coupling method for elasto-plastic analysis. 8th International Conference on Boundary Element Techniques (BeTeq 2007). July2007, Naples, Italy. pp.269–274.
[19] Elleithy, W. and Langer, U. Efficient elasto-plastic analysis via an adaptive finite element–boundary element coupling method. Thirtieth International Conference on Boundary Elements and Other Mesh Reduction Methods (BEM/MRM XXX). July, Maribor, Slovenia. pp.229–238.
[20] DOI: 10.1016/S0045-7825(03)00312-8 · Zbl 1037.65130
[21] DOI: 10.1016/j.enganabound.2003.12.002 · Zbl 1130.74452
[22] DOI: 10.1007/s00791-005-0010-9 · Zbl 1512.74097
[23] DOI: 10.1002/(SICI)1097-0207(20000620)48:5<633::AID-NME874>3.0.CO;2-K · Zbl 0986.74073
[24] DOI: 10.1016/S0955-7997(02)00020-6 · Zbl 1037.74054
[25] DOI: 10.1007/s00419-006-0037-5 · Zbl 1168.74452
[26] Haase G., Boundary Element Topics pp 121– (1998)
[27] DOI: 10.1016/S0955-7997(03)00012-2 · Zbl 1054.74729
[28] Holzer, S. M. 1992. ”Das Symmetrische Randelementverfahren: Numerische Realisierung und Kopplung mit der Finite-Elemente-Methode zur Elastoplastischen Strukturanalyse”. Munich: Technische Universität München.
[29] DOI: 10.1090/conm/157/01434
[30] Langer, U. and Steinbach, O. Coupled boundary and finite element tearing and interconnecting methods. Proceedings of the 15th International Conference on Domain Decomposition. July, Berlin, Germany. pp.83–98. · Zbl 1066.65136
[31] DOI: 10.1137/S0036142997316499 · Zbl 0938.65138
[32] Owen, D. R.J. and Hinton, E. 1980. ”Finite Elements in Plasticity: Theory and Practice”. Swansea, UK: Pineridge Press. · Zbl 0482.73051
[33] Polizotto C., ZAMM 74 (11) pp 553– (1994) · Zbl 0819.73067
[34] Simo, J. C. and Hughes, T. J.R. 1998. ”Computational Inelasticity”. New York: Springer. · Zbl 0934.74003
[35] DOI: 10.1007/BF02128438 · Zbl 0442.73079
[36] DOI: 10.1002/nme.1408 · Zbl 1122.74382
[37] DOI: 10.1002/9780470694626
[38] Springhetti R., Comp. Model. Eng. Sci. 13 pp 67– (2006)
[39] DOI: 10.1016/S0045-7825(97)00233-8 · Zbl 0968.74076
[40] Stephan E. P., Encyclopedia of Computational Mechanics Vol. 1 Fundamentals pp 375– (2004)
[41] DOI: 10.1002/nag.1610110202 · Zbl 0611.73105
[42] DOI: 10.1016/j.enganabound.2005.04.004 · Zbl 1182.74209
[43] DOI: 10.1002/nme.1620110210 · Zbl 0347.65048
[44] Zienkiewicz O. C., Energy Methods in Finite Element Analysis pp 81– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.