×

FEM-BEM coupling for electromagnetism with the sparse cardinal sine decomposition. (English. French summary) Zbl 1407.78023

Summary: This paper presents a FEM-BEM coupling method suitable for the numerical simulation of the electromagnetic scattering of objects composed of dielectric materials and perfect electric conductors. The originality of the approach lies in part in the use of the newly proposed sparse cardinal sine decomposition (SCSD) method for the BEM part of the computation and the fact that the simulation software is almost entirely written in MATLAB. The performance of the method is illustrated by the computation of the electromagnetic scattering by an UAV-like object with two RAM regions proposed in the workshop ISAE EM 2016.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
78M15 Boundary element methods applied to problems in optics and electromagnetic theory
78A45 Diffraction, scattering

Software:

Gmsh; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] F. Alouges and M. Aussal, The Sparse Cardinal Sine Decomposition and its application for fast numerical convolution, Numerical Algorithms, 1-22, 2014. · Zbl 1326.65183
[2] F. Alouges and M. Aussal, The Sparse Cardinal Sine Decomposition applied to three-dimensional acoustic scattering, In preparation. · Zbl 1326.65183
[3] F. Alouges, M. Aussal, A. Lefebvre-Lepot, F. Pigeonneau and A. Sellier, The Sparse Cardinal Sine Decomposition applied to Stokes integral equations, Proceedings of the International Conference on Multiphase Flow, ICMF 2016, Firenze, Italy, May 22 - 27, 2016.
[4] M. Aussal, M´ethodes num´eriques pour la spatialisation sonore, de la simulation ‘a la synth‘ese binaurale, PhD thesis, Ecole polytechnique, 2014.
[5] A.Bendali,Equationsintgralesenlectromagntisme,availableathttps://www.math.univtoulouse.fr/˜abendali/polyelec1314.pdf .
[6] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. John Wiley & Sons (1983). · Zbl 0522.35001
[7] A. Dutt and V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM Journal of Scientific Computing, 14, 1993. · Zbl 0791.65108
[8] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Computational Physics, 73(2):325-348, 1987. · Zbl 0629.65005
[9] L. Greengard, The rapid evaluation of potential fields in particle systems, MIT press, 1988. · Zbl 1001.31500
[10] L. Greengard and J. Y. Lee, Accelerating the non-uniform Fast Fourier Transform, SIAM review, 46(3):443-455, 2004. · Zbl 1064.65156
[11] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. Part I: introduction to H-matrices, Computing, 62(2):89– 108, 1999. · Zbl 0927.65063
[12] J. Y. Lee and L. Greengard, The type 3 non-uniform FFT and its applications, Journal of Computational Physics, 206:1 (2005), 1-7. · Zbl 1072.65170
[13] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and postprocessing facilities, International Journal for Numerical Methods in Engineering 79(11), (2009), 1309-1331. 58ESAIM: PROCEEDINGS AND SURVEYS Figure 9. ISAR image - HH polarisation. · Zbl 1176.74181
[14] L. Medgyesi-Mitschang and J. Putnam, Electromagnetic scattering from axially inhomogeneous bodies of revolution, IEEE Transactions on Antennas and Propagation, 32(8):797-806, 1984. · Zbl 0946.78514
[15] J.-C. Nedelec, Acoustic and Electromagnetic Equations, Integral Representations for Harmonic Problems, Springer, 2001. · Zbl 0981.35002
[16] V. Rokhlin, Diagonal form of translation operators for the Helmholtz equation in three dimensions, Appl. Comput. Harmon. Anal., 1 (1993), 82-93. · Zbl 0795.35021
[17] J. Simon Extension des m´ethodes multipoles rapides: r´esolution pour des seconds membres multiples et applications aux objets di´electriques, Th‘ese de l’universit´e de Versailles Saint-Quentin-en-Yvelines, 2003.
[18] P. Soudais, Iterative solution of a 3D scattering problem from arbitrary shaped multi-dielectric and multi-conducting bodies, IEEE Transactions on Antennas and Propagation, 954-959, 1994.
[19] See http://www.cims.nyu.edu/cmcl/nufft/nufft.html
[20] See http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html
[21] Matlab, version 8.1.0 (R2013a), The MathWorks Inc., Natick, Massachusetts. http://www.mathworks.com.
[22] N. Zerbib, M´ethodes de sous-structuration et de d´ecomposition de domaine pour la r´esolution des ´equations de Maxwell. Application au rayonnement d’antenne dans un environnement complexe, PhD thesis, universit de Toulouse, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.