Asl, Azam; Overton, Michael L. Analysis of limited-memory BFGS on a class of nonsmooth convex functions. (English) Zbl 07315144 IMA J. Numer. Anal. 41, No. 1, 1-27 (2021). MSC: 65 PDF BibTeX XML Cite \textit{A. Asl} and \textit{M. L. Overton}, IMA J. Numer. Anal. 41, No. 1, 1--27 (2021; Zbl 07315144) Full Text: DOI
Lui, S. H.; Nataj, Sarah Superlinear convergence of Broyden’s method and BFGS algorithm using Kantorovich-type assumptions. (English) Zbl 07305126 J. Comput. Appl. Math. 385, Article ID 113204, 21 p. (2021). MSC: 65 90 PDF BibTeX XML Cite \textit{S. H. Lui} and \textit{S. Nataj}, J. Comput. Appl. Math. 385, Article ID 113204, 21 p. (2021; Zbl 07305126) Full Text: DOI
Gu, Yan; Yamashita, Nobuo Alternating direction method of multipliers with variable metric indefinite proximal terms for convex optimization. (English) Zbl 1452.90243 Numer. Algebra Control Optim. 10, No. 4, 487-510 (2020). MSC: 90C25 90C53 65K05 PDF BibTeX XML Cite \textit{Y. Gu} and \textit{N. Yamashita}, Numer. Algebra Control Optim. 10, No. 4, 487--510 (2020; Zbl 1452.90243) Full Text: DOI
Yuan, Xinru; Huang, Wen; Absil, P.-A.; Gallivan, Kyle A. Computing the matrix geometric mean: Riemannian versus Euclidean conditioning, implementation techniques, and a Riemannian BFGS method. (English) Zbl 07286027 Numer. Linear Algebra Appl. 27, No. 5, e2321, 23 p. (2020). MSC: 65K10 15B48 PDF BibTeX XML Cite \textit{X. Yuan} et al., Numer. Linear Algebra Appl. 27, No. 5, e2321, 23 p. (2020; Zbl 07286027) Full Text: DOI
Vuchkov, Radoslav G.; Petra, Cosmin G.; Petra, Noémi On the derivation of quasi-Newton formulas for optimization in function spaces. (English) Zbl 1441.90181 Numer. Funct. Anal. Optim. 41, No. 13, 1564-1587 (2020). MSC: 90C53 90C30 65K10 46N10 35R30 35Q93 PDF BibTeX XML Cite \textit{R. G. Vuchkov} et al., Numer. Funct. Anal. Optim. 41, No. 13, 1564--1587 (2020; Zbl 1441.90181) Full Text: DOI
Yuan, Gonglin; Wang, Xiaoliang; Sheng, Zhou The projection technique for two open problems of unconstrained optimization problems. (English) Zbl 1450.90037 J. Optim. Theory Appl. 186, No. 2, 590-619 (2020). MSC: 90C26 90C53 PDF BibTeX XML Cite \textit{G. Yuan} et al., J. Optim. Theory Appl. 186, No. 2, 590--619 (2020; Zbl 1450.90037) Full Text: DOI
Andrei, Neculai A double parameter self-scaling memoryless BFGS method for unconstrained optimization. (English) Zbl 1445.90101 Comput. Appl. Math. 39, No. 3, Paper No. 159, 14 p. (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{N. Andrei}, Comput. Appl. Math. 39, No. 3, Paper No. 159, 14 p. (2020; Zbl 1445.90101) Full Text: DOI
Bojari, S.; Eslahchi, M. R. Global convergence of a family of modified BFGS methods under a modified weak-Wolfe-Powell line search for nonconvex functions. (English) Zbl 1445.90085 4OR 18, No. 2, 219-244 (2020). MSC: 90C26 90C53 PDF BibTeX XML Cite \textit{S. Bojari} and \textit{M. R. Eslahchi}, 4OR 18, No. 2, 219--244 (2020; Zbl 1445.90085) Full Text: DOI
Ou, Yigui; Lin, Haichan A class of accelerated conjugate-gradient-like methods based on a modified secant equation. (English) Zbl 1449.90260 J. Ind. Manag. Optim. 16, No. 3, 1503-1518 (2020). MSC: 90C06 90C30 65K05 PDF BibTeX XML Cite \textit{Y. Ou} and \textit{H. Lin}, J. Ind. Manag. Optim. 16, No. 3, 1503--1518 (2020; Zbl 1449.90260) Full Text: DOI
Ma, Chunping; Yu, Tiantang; Van Lich, Le; Thanh-Tung, Nguyen; Bui, Tinh Quoc Detection of multiple complicated flaw clusters by dynamic variable-node XFEM with a three-step detection algorithm. (English) Zbl 07212900 Eur. J. Mech., A, Solids 82, Article ID 103980, 13 p. (2020). MSC: 74 PDF BibTeX XML Cite \textit{C. Ma} et al., Eur. J. Mech., A, Solids 82, Article ID 103980, 13 p. (2020; Zbl 07212900) Full Text: DOI
Hosseini Dehmiry, Alireza The global convergence of the BFGS method under a modified Yuan-Wei-Lu line search technique. (English) Zbl 1443.90280 Numer. Algorithms 84, No. 2, 781-793 (2020). MSC: 90C26 PDF BibTeX XML Cite \textit{A. Hosseini Dehmiry}, Numer. Algorithms 84, No. 2, 781--793 (2020; Zbl 1443.90280) Full Text: DOI
Curtis, Frank E.; Robinson, Daniel P.; Zhou, Baoyu A self-correcting variable-metric algorithm framework for nonsmooth optimization. (English) Zbl 07199505 IMA J. Numer. Anal. 40, No. 2, 1154-1187 (2020). MSC: 65 PDF BibTeX XML Cite \textit{F. E. Curtis} et al., IMA J. Numer. Anal. 40, No. 2, 1154--1187 (2020; Zbl 07199505) Full Text: DOI
Shen, Chungen; Fan, Changxing; Wang, Yunlong; Xue, Wenjuan Limited memory BFGS algorithm for the matrix approximation problem in Frobenius norm. (English) Zbl 1449.65123 Comput. Appl. Math. 39, No. 2, Paper No. 43, 25 p. (2020). MSC: 65K05 90C55 90C30 PDF BibTeX XML Cite \textit{C. Shen} et al., Comput. Appl. Math. 39, No. 2, Paper No. 43, 25 p. (2020; Zbl 1449.65123) Full Text: DOI
Wu, Jian-Ying; Huang, Yuli; Nguyen, Vinh Phu On the BFGS monolithic algorithm for the unified phase field damage theory. (English) Zbl 1441.74196 Comput. Methods Appl. Mech. Eng. 360, Article ID 112704, 23 p. (2020). MSC: 74R05 65Z05 74R10 PDF BibTeX XML Cite \textit{J.-Y. Wu} et al., Comput. Methods Appl. Mech. Eng. 360, Article ID 112704, 23 p. (2020; Zbl 1441.74196) Full Text: DOI
Bai, Minru; Zhao, Jing; Zhang, ZhangHui A descent cautious BFGS method for computing US-eigenvalues of symmetric complex tensors. (English) Zbl 07181877 J. Glob. Optim. 76, No. 4, 889-911 (2020). Reviewer: Nada Djuranović-Miličić (Beograd) MSC: 90C30 PDF BibTeX XML Cite \textit{M. Bai} et al., J. Glob. Optim. 76, No. 4, 889--911 (2020; Zbl 07181877) Full Text: DOI
Lotfi, Mina; Hosseini, S. Mohammad An efficient Dai-Liao type conjugate gradient method by reformulating the CG parameter in the search direction equation. (English) Zbl 07169526 J. Comput. Appl. Math. 371, Article ID 112708, 15 p. (2020). MSC: 65 90 PDF BibTeX XML Cite \textit{M. Lotfi} and \textit{S. M. Hosseini}, J. Comput. Appl. Math. 371, Article ID 112708, 15 p. (2020; Zbl 07169526) Full Text: DOI
Nataj, Sarah; Lui, S. H. Superlinear convergence of nonlinear conjugate gradient method and scaled memoryless BFGS method based on assumptions about the initial point. (English) Zbl 1433.90192 Appl. Math. Comput. 369, Article ID 124829, 15 p. (2020). MSC: 90C53 65K05 90C30 PDF BibTeX XML Cite \textit{S. Nataj} and \textit{S. H. Lui}, Appl. Math. Comput. 369, Article ID 124829, 15 p. (2020; Zbl 1433.90192) Full Text: DOI
Berahas, Albert S.; Takáč, Martin A robust multi-batch L-BFGS method for machine learning. (English) Zbl 1430.90523 Optim. Methods Softw. 35, No. 1, 191-219 (2020). MSC: 90C30 90C06 90C53 65K05 68T09 PDF BibTeX XML Cite \textit{A. S. Berahas} and \textit{M. Takáč}, Optim. Methods Softw. 35, No. 1, 191--219 (2020; Zbl 1430.90523) Full Text: DOI arXiv
Li, Min A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. (English) Zbl 1438.90326 J. Ind. Manag. Optim. 16, No. 1, 245-260 (2020). MSC: 90C30 65K05 90C53 PDF BibTeX XML Cite \textit{M. Li}, J. Ind. Manag. Optim. 16, No. 1, 245--260 (2020; Zbl 1438.90326) Full Text: DOI
Zhou, Weijun A modified BFGS type quasi-Newton method with line search for symmetric nonlinear equations problems. (English) Zbl 1423.90250 J. Comput. Appl. Math. 367, Article ID 112454, 8 p. (2020). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{W. Zhou}, J. Comput. Appl. Math. 367, Article ID 112454, 8 p. (2020; Zbl 1423.90250) Full Text: DOI
Dehghani, Razieh; Hosseini, Mohmadmehdi Using a modied secant equation for unconstrained optimization. (English) Zbl 07314085 J. Math. Ext. 13, No. 1, 103-116 (2019). MSC: 90C53 49M37 65K05 PDF BibTeX XML Cite \textit{R. Dehghani} and \textit{M. Hosseini}, J. Math. Ext. 13, No. 1, 103--116 (2019; Zbl 07314085) Full Text: Link
Gelashvili, K. Add-in for solvers of unconstrained minimization to eliminate lower bounds of variables by transformation. (English) Zbl 07300646 Trans. A. Razmadze Math. Inst. 173, No. 2, 39-46 (2019). MSC: 90C30 90-04 PDF BibTeX XML Cite \textit{K. Gelashvili}, Trans. A. Razmadze Math. Inst. 173, No. 2, 39--46 (2019; Zbl 07300646) Full Text: Link
Bozântan, Andrei; Berinde, Vasile A comparative study of the PL homotopy and BFGS methods for some nonsmooth optimization problems. (English) Zbl 07238290 Creat. Math. Inform. 28, No. 2, 97-104 (2019). MSC: 47H10 47J25 49M15 49M99 PDF BibTeX XML Cite \textit{A. Bozântan} and \textit{V. Berinde}, Creat. Math. Inform. 28, No. 2, 97--104 (2019; Zbl 07238290)
Silva, Ronaldo; Gomes-Silva, Frank; Ramos, Manoel; Cordeiro, Gauss; Marinho, Pedro; De Andrade, Thiago A. N. The exponentiated Kumaraswamy-G class: general properties and application. (English) Zbl 1437.62085 Rev. Colomb. Estad. 42, No. 1, 1-33 (2019). MSC: 62E15 62F10 62N05 PDF BibTeX XML Cite \textit{R. Silva} et al., Rev. Colomb. Estad. 42, No. 1, 1--33 (2019; Zbl 1437.62085) Full Text: DOI
Luft, Daniel; Welker, Kathrin Computational investigations of an obstacle-type shape optimization problem in the space of smooth shapes. (English) Zbl 07178752 Nielsen, Frank (ed.) et al., Geometric science of information. 4th international conference, GSI 2019, Toulouse, France, August 27–29, 2019. Proceedings. Cham: Springer (ISBN 978-3-030-26979-1/pbk; 978-3-030-26980-7/ebook). Lecture Notes in Computer Science 11712, 579-588 (2019). MSC: 94A08 94A12 94A15 94A17 PDF BibTeX XML Cite \textit{D. Luft} and \textit{K. Welker}, Lect. Notes Comput. Sci. 11712, 579--588 (2019; Zbl 07178752) Full Text: DOI
Brust, Johannes J.; Marcia, Roummel F.; Petra, Cosmin G. Large-scale quasi-Newton trust-region methods with low-dimensional linear equality constraints. (English) Zbl 1435.90147 Comput. Optim. Appl. 74, No. 3, 669-701 (2019). MSC: 90C53 90C06 PDF BibTeX XML Cite \textit{J. J. Brust} et al., Comput. Optim. Appl. 74, No. 3, 669--701 (2019; Zbl 1435.90147) Full Text: DOI
Gao, Peiting; He, Chuanjiang; Liu, Yang An adaptive family of projection methods for constrained monotone nonlinear equations with applications. (English) Zbl 1429.65107 Appl. Math. Comput. 359, 1-16 (2019). MSC: 65H10 90C52 94A12 PDF BibTeX XML Cite \textit{P. Gao} et al., Appl. Math. Comput. 359, 1--16 (2019; Zbl 1429.65107) Full Text: DOI
Ferreiro-Ferreiro, Ana M.; García-Rodríguez, José A.; Souto, Luis; Vázquez, Carlos Basin hopping with synched multi L-BFGS local searches. Parallel implementation in multi-CPU and GPUs. (English) Zbl 1428.90131 Appl. Math. Comput. 356, 282-298 (2019). MSC: 90C26 68W10 68M07 90C59 PDF BibTeX XML Cite \textit{A. M. Ferreiro-Ferreiro} et al., Appl. Math. Comput. 356, 282--298 (2019; Zbl 1428.90131) Full Text: DOI
Babaie-Kafaki, Saman; Aminifard, Zohre Two–parameter scaled memoryless BFGS methods with a nonmonotone choice for the initial step length. (English) Zbl 1433.90157 Numer. Algorithms 82, No. 4, 1345-1357 (2019). MSC: 90C30 90C53 65K05 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki} and \textit{Z. Aminifard}, Numer. Algorithms 82, No. 4, 1345--1357 (2019; Zbl 1433.90157) Full Text: DOI
Lee, Jae Hwa; Jung, Yoon Mo; Yuan, Ya-xiang; Yun, Sangwoon A subspace SQP method for equality constrained optimization. (English) Zbl 1427.90264 Comput. Optim. Appl. 74, No. 1, 177-194 (2019). MSC: 90C30 90C55 90C06 65K05 PDF BibTeX XML Cite \textit{J. H. Lee} et al., Comput. Optim. Appl. 74, No. 1, 177--194 (2019; Zbl 1427.90264) Full Text: DOI
Liu, Zexian; Liu, Hongwei; Wang, Xiping Accelerated augmented Lagrangian method for total variation minimization. (English) Zbl 1438.90259 Comput. Appl. Math. 38, No. 2, Paper No. 50, 15 p. (2019). MSC: 90C25 90C06 65F22 PDF BibTeX XML Cite \textit{Z. Liu} et al., Comput. Appl. Math. 38, No. 2, Paper No. 50, 15 p. (2019; Zbl 1438.90259) Full Text: DOI
Lin, Hongzhou; Mairal, Julien; Harchaoui, Zaid An inexact variable metric proximal point algorithm for generic quasi-Newton acceleration. (English) Zbl 1421.90117 SIAM J. Optim. 29, No. 2, 1408-1443 (2019). MSC: 90C25 90C53 PDF BibTeX XML Cite \textit{H. Lin} et al., SIAM J. Optim. 29, No. 2, 1408--1443 (2019; Zbl 1421.90117) Full Text: DOI
Boggs, Paul T.; Byrd, Richard H. Adaptive, limited-memory BFGS algorithms for unconstrained optimization. (English) Zbl 1431.65082 SIAM J. Optim. 29, No. 2, 1282-1299 (2019). MSC: 65K05 90C30 90C53 PDF BibTeX XML Cite \textit{P. T. Boggs} and \textit{R. H. Byrd}, SIAM J. Optim. 29, No. 2, 1282--1299 (2019; Zbl 1431.65082) Full Text: DOI
Javaherian, Ashkan; Holman, Sean Direct quantitative photoacoustic tomography for realistic acoustic media. (English) Zbl 1427.65224 Inverse Probl. 35, No. 8, Article ID 084004, 39 p. (2019). Reviewer: Christian Clason (Graz) MSC: 65M32 65N21 78A70 76Q05 94A08 92C55 65K10 65H10 49M15 49N60 PDF BibTeX XML Cite \textit{A. Javaherian} and \textit{S. Holman}, Inverse Probl. 35, No. 8, Article ID 084004, 39 p. (2019; Zbl 1427.65224) Full Text: DOI
Xue, Yanqin; Liu, Hongwei; Liu, Zexian An improved nonmonotone adaptive trust region method. (English) Zbl 07088744 Appl. Math., Praha 64, No. 3, 335-350 (2019). MSC: 90C30 PDF BibTeX XML Cite \textit{Y. Xue} et al., Appl. Math., Praha 64, No. 3, 335--350 (2019; Zbl 07088744) Full Text: DOI
Livieris, Ioannis E. Forecasting economy-related data utilizing weight-constrained recurrent neural networks. (English) Zbl 07077460 Algorithms (Basel) 12, No. 4, Paper No. 85, 11 p. (2019). MSC: 68 91 PDF BibTeX XML Cite \textit{I. E. Livieris}, Algorithms (Basel) 12, No. 4, Paper No. 85, 11 p. (2019; Zbl 07077460) Full Text: DOI
Khoshgam, Zahra; Ashrafi, Ali A new modified scaled conjugate gradient method for large-scale unconstrained optimization with non-convex objective function. (English) Zbl 1422.90023 Optim. Methods Softw. 34, No. 4, 783-796 (2019). MSC: 90C06 90C26 PDF BibTeX XML Cite \textit{Z. Khoshgam} and \textit{A. Ashrafi}, Optim. Methods Softw. 34, No. 4, 783--796 (2019; Zbl 1422.90023) Full Text: DOI
Bidabadi, N. Using a spectral scaling structured BFGS method for constrained nonlinear least squares. (English) Zbl 1415.90117 Optim. Methods Softw. 34, No. 4, 693-706 (2019). MSC: 90C30 90C55 PDF BibTeX XML Cite \textit{N. Bidabadi}, Optim. Methods Softw. 34, No. 4, 693--706 (2019; Zbl 1415.90117) Full Text: DOI
Petra, Cosmin G.; Chiang, Naiyuan; Anitescu, Mihai A structured quasi-Newton algorithm for optimizing with incomplete Hessian information. (English) Zbl 1411.90358 SIAM J. Optim. 29, No. 2, 1048-1075 (2019). MSC: 90C53 90C30 90C06 PDF BibTeX XML Cite \textit{C. G. Petra} et al., SIAM J. Optim. 29, No. 2, 1048--1075 (2019; Zbl 1411.90358) Full Text: DOI
Vlček, Jan; Lukšan, Ladislav Properties of the block BFGS update and its application to the limited-memory block BNS method for unconstrained minimization. (English) Zbl 1440.90076 Numer. Algorithms 80, No. 3, 957-987 (2019). Reviewer: Ctirad Matonoha (Praha) MSC: 90C30 65K10 49M15 90C53 PDF BibTeX XML Cite \textit{J. Vlček} and \textit{L. Lukšan}, Numer. Algorithms 80, No. 3, 957--987 (2019; Zbl 1440.90076) Full Text: DOI
Dehghani, Razie; Hosseini, Mohammad Mehdi; Bidabadi, Narges The modified BFGS method with new secant relation for unconstrained optimization problems. (English) Zbl 1424.90257 Comput. Methods Differ. Equ. 7, No. 1, 28-41 (2019). MSC: 90C30 90C53 49M37 65K05 PDF BibTeX XML Cite \textit{R. Dehghani} et al., Comput. Methods Differ. Equ. 7, No. 1, 28--41 (2019; Zbl 1424.90257) Full Text: Link
Gao, Wenbo; Goldfarb, Donald Quasi-Newton methods: superlinear convergence without line searches for self-concordant functions. (English) Zbl 1409.90091 Optim. Methods Softw. 34, No. 1, 194-217 (2019). MSC: 90B40 90C53 PDF BibTeX XML Cite \textit{W. Gao} and \textit{D. Goldfarb}, Optim. Methods Softw. 34, No. 1, 194--217 (2019; Zbl 1409.90091) Full Text: DOI arXiv
Keskar, N.; Wächter, Andreas A limited-memory quasi-Newton algorithm for bound-constrained non-smooth optimization. (English) Zbl 1406.49032 Optim. Methods Softw. 34, No. 1, 150-171 (2019). MSC: 49M27 65K05 90C30 90C53 49M15 PDF BibTeX XML Cite \textit{N. Keskar} and \textit{A. Wächter}, Optim. Methods Softw. 34, No. 1, 150--171 (2019; Zbl 1406.49032) Full Text: DOI
Abdi, Fatemeh; Shakeri, Fatemeh A globally convergent BFGS method for pseudo-monotone variational inequality problems. (English) Zbl 1406.49008 Optim. Methods Softw. 34, No. 1, 25-36 (2019). MSC: 49J40 49M15 90C33 PDF BibTeX XML Cite \textit{F. Abdi} and \textit{F. Shakeri}, Optim. Methods Softw. 34, No. 1, 25--36 (2019; Zbl 1406.49008) Full Text: DOI
Gaffke, N.; Schwabe, R. Quasi-Newton algorithm for optimal approximate linear regression design: optimization in matrix space. (English) Zbl 1394.62102 J. Stat. Plann. Inference 198, 62-78 (2019). MSC: 62K05 65C60 90C25 PDF BibTeX XML Cite \textit{N. Gaffke} and \textit{R. Schwabe}, J. Stat. Plann. Inference 198, 62--78 (2019; Zbl 1394.62102) Full Text: DOI
De Sterck, Hans; Howse, Alexander J. M. Nonlinearly preconditioned L-BFGS as an acceleration mechanism for alternating least squares with application to tensor decomposition. (English) Zbl 07031741 Numer. Linear Algebra Appl. 25, No. 6, e2202, 30 p. (2018). MSC: 65K10 15A69 90C53 PDF BibTeX XML Cite \textit{H. De Sterck} and \textit{A. J. M. Howse}, Numer. Linear Algebra Appl. 25, No. 6, e2202, 30 p. (2018; Zbl 07031741) Full Text: DOI arXiv
Nita, C.; Vandewalle, S.; Meyers, J. Multigrid optimization for DNS-based optimal control in turbulent channel flows. (English) Zbl 1406.76040 J. Comput. Phys. 366, 14-32 (2018). MSC: 76F70 76D55 76F65 PDF BibTeX XML Cite \textit{C. Nita} et al., J. Comput. Phys. 366, 14--32 (2018; Zbl 1406.76040) Full Text: DOI
Ou, Yigui; Zhou, Xin A modified scaled memoryless BFGS preconditioned conjugate gradient algorithm for nonsmooth convex optimization. (English) Zbl 1412.90113 J. Ind. Manag. Optim. 14, No. 2, 785-801 (2018). MSC: 90C25 90C30 65K05 PDF BibTeX XML Cite \textit{Y. Ou} and \textit{X. Zhou}, J. Ind. Manag. Optim. 14, No. 2, 785--801 (2018; Zbl 1412.90113) Full Text: DOI
Webert, Jan-Hendrik; Gill, Philip E.; Kimmerle, Sven-Joachim; Gerdts, Matthias A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. (English) Zbl 1407.49045 Discrete Contin. Dyn. Syst., Ser. S 11, No. 6, 1259-1282 (2018). MSC: 49M25 49J15 49J20 90C53 90C55 35Q35 35L04 34H05 49N90 PDF BibTeX XML Cite \textit{J.-H. Webert} et al., Discrete Contin. Dyn. Syst., Ser. S 11, No. 6, 1259--1282 (2018; Zbl 1407.49045) Full Text: DOI
Pavon, Michele A variational derivation of a class of BFGS-like methods. (English) Zbl 07001097 Optimization 67, No. 11, 2081-2089 (2018). MSC: 90C 49 PDF BibTeX XML Cite \textit{M. Pavon}, Optimization 67, No. 11, 2081--2089 (2018; Zbl 07001097) Full Text: DOI arXiv
Li, Min A family of three-term nonlinear conjugate gradient methods close to the memoryless BFGS method. (English) Zbl 1412.90165 Optim. Lett. 12, No. 8, 1911-1927 (2018). MSC: 90C52 PDF BibTeX XML Cite \textit{M. Li}, Optim. Lett. 12, No. 8, 1911--1927 (2018; Zbl 1412.90165) Full Text: DOI
Bergamaschi, L.; De Simone, V.; di Serafino, D.; Martínez, A. BFGS-like updates of constraint preconditioners for sequences of KKT linear systems in quadratic programming. (English) Zbl 06986987 Numer. Linear Algebra Appl. 25, No. 5, e2144, 19 p. (2018). MSC: 65F08 65K05 PDF BibTeX XML Cite \textit{L. Bergamaschi} et al., Numer. Linear Algebra Appl. 25, No. 5, e2144, 19 p. (2018; Zbl 06986987) Full Text: DOI
Livieris, Ioannis E.; Tampakas, Vassilis; Pintelas, Panagiotis A descent hybrid conjugate gradient method based on the memoryless BFGS update. (English) Zbl 06986853 Numer. Algorithms 79, No. 4, 1169-1185 (2018). MSC: 65 PDF BibTeX XML Cite \textit{I. E. Livieris} et al., Numer. Algorithms 79, No. 4, 1169--1185 (2018; Zbl 06986853) Full Text: DOI
Babaie-Kafaki, Saman; Ghanbari, Reza Two adaptive Dai-Liao nonlinear conjugate gradient methods. (English) Zbl 1397.90401 Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 3, 1505-1509 (2018). MSC: 90C53 49M37 65K05 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki} and \textit{R. Ghanbari}, Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 3, 1505--1509 (2018; Zbl 1397.90401) Full Text: DOI
Bayer, Tomáš; Kočandrlová, Milada Reconstruction of map projection, its inverse and re-projection. (English) Zbl 06945742 Appl. Math., Praha 63, No. 4, 455-481 (2018). MSC: 34B16 34C25 PDF BibTeX XML Cite \textit{T. Bayer} and \textit{M. Kočandrlová}, Appl. Math., Praha 63, No. 4, 455--481 (2018; Zbl 06945742) Full Text: DOI
Andrei, Neculai A double-parameter scaling Broyden-Fletcher-Goldfarb-Shanno method based on minimizing the measure function of Byrd and Nocedal for unconstrained optimization. (English) Zbl 1398.49025 J. Optim. Theory Appl. 178, No. 1, 191-218 (2018). MSC: 49M37 65K05 90C30 PDF BibTeX XML Cite \textit{N. Andrei}, J. Optim. Theory Appl. 178, No. 1, 191--218 (2018; Zbl 1398.49025) Full Text: DOI
Babaie-Kafaki, Saman; Ghanbari, Reza A linear hybridization of the Hestenes-Stiefel method and the memoryless BFGS technique. (English) Zbl 1402.90211 Mediterr. J. Math. 15, No. 3, Paper No. 86, 10 p. (2018). MSC: 90C53 90C30 65K05 65F35 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki} and \textit{R. Ghanbari}, Mediterr. J. Math. 15, No. 3, Paper No. 86, 10 p. (2018; Zbl 1402.90211) Full Text: DOI
Wang, Hsuan-Hao; Lo, Yi-Su; Hwang, Feng-Tai; Hwang, Feng-Nan A full-space quasi-Lagrange-Newton-Krylov algorithm for trajectory optimization problems. (English) Zbl 06883453 ETNA, Electron. Trans. Numer. Anal. 49, 103-125 (2018). MSC: 65K10 49M15 65H10 PDF BibTeX XML Cite \textit{H.-H. Wang} et al., ETNA, Electron. Trans. Numer. Anal. 49, 103--125 (2018; Zbl 06883453) Full Text: Link
Liu, Zexian; Liu, Hongwei An efficient gradient method with approximate optimal stepsize for large-scale unconstrained optimization. (English) Zbl 1397.90270 Numer. Algorithms 78, No. 1, 21-39 (2018). MSC: 90C06 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{H. Liu}, Numer. Algorithms 78, No. 1, 21--39 (2018; Zbl 1397.90270) Full Text: DOI
Arreckx, Sylvain; Orban, Dominique A regularized factorization-free method for equality-constrained optimization. (English) Zbl 1390.90389 SIAM J. Optim. 28, No. 2, 1613-1639 (2018). MSC: 90C06 90C20 90C30 90C51 90C53 90C55 65F10 65F50 PDF BibTeX XML Cite \textit{S. Arreckx} and \textit{D. Orban}, SIAM J. Optim. 28, No. 2, 1613--1639 (2018; Zbl 1390.90389) Full Text: DOI
Guo, Jiayi; Lewis, A. S. Nonsmooth variants of Powell’s BFGS convergence theorem. (English) Zbl 1397.90358 SIAM J. Optim. 28, No. 2, 1301-1311 (2018). Reviewer: Nada Djuranović-Miličić (Belgrade) MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{J. Guo} and \textit{A. S. Lewis}, SIAM J. Optim. 28, No. 2, 1301--1311 (2018; Zbl 1397.90358) Full Text: DOI
Gao, Wenbo; Goldfarb, Donald Block BFGS methods. (English) Zbl 1397.90402 SIAM J. Optim. 28, No. 2, 1205-1231 (2018). Reviewer: Nada Djuranović-Miličić (Belgrade) MSC: 90C53 90C26 PDF BibTeX XML Cite \textit{W. Gao} and \textit{D. Goldfarb}, SIAM J. Optim. 28, No. 2, 1205--1231 (2018; Zbl 1397.90402) Full Text: DOI arXiv
Liu, Zexian; Liu, Hongwei; Dong, Xiaoliang An efficient gradient method with approximate optimal stepsize for the strictly convex quadratic minimization problem. (English) Zbl 1398.90117 Optimization 67, No. 3, 427-440 (2018). MSC: 90C20 90C25 90C52 PDF BibTeX XML Cite \textit{Z. Liu} et al., Optimization 67, No. 3, 427--440 (2018; Zbl 1398.90117) Full Text: DOI
Li, Min A modified Hestense-Stiefel conjugate gradient method close to the memoryless BFGS quasi-Newton method. (English) Zbl 1397.90361 Optim. Methods Softw. 33, No. 2, 336-353 (2018). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{M. Li}, Optim. Methods Softw. 33, No. 2, 336--353 (2018; Zbl 1397.90361) Full Text: DOI
Biglari, Fahimeh; Ebadian, Ali; Foroutan, Mohammadreza Global convergence property of scaled two-step BFGS method. (English) Zbl 1390.90575 Mediterr. J. Math. 15, No. 1, Paper No. 11, 13 p. (2018). MSC: 90C53 PDF BibTeX XML Cite \textit{F. Biglari} et al., Mediterr. J. Math. 15, No. 1, Paper No. 11, 13 p. (2018; Zbl 1390.90575) Full Text: DOI
Huang, Wen; Absil, P.-A.; Gallivan, K. A. A Riemannian BFGS method without differentiated retraction for nonconvex optimization problems. (English) Zbl 1382.65177 SIAM J. Optim. 28, No. 1, 470-495 (2018). MSC: 65K05 90C48 90C53 PDF BibTeX XML Cite \textit{W. Huang} et al., SIAM J. Optim. 28, No. 1, 470--495 (2018; Zbl 1382.65177) Full Text: DOI
Leimkuhler, Benedict; Matthews, Charles; Weare, Jonathan Ensemble preconditioning for Markov chain Monte Carlo simulation. (English) Zbl 1384.65004 Stat. Comput. 28, No. 2, 277-290 (2018). MSC: 65C05 65C40 60J22 PDF BibTeX XML Cite \textit{B. Leimkuhler} et al., Stat. Comput. 28, No. 2, 277--290 (2018; Zbl 1384.65004) Full Text: DOI
Andrei, Neculai An adaptive scaled BFGS method for unconstrained optimization. (English) Zbl 1383.65059 Numer. Algorithms 77, No. 2, 413-432 (2018). Reviewer: Hans Benker (Merseburg) MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{N. Andrei}, Numer. Algorithms 77, No. 2, 413--432 (2018; Zbl 1383.65059) Full Text: DOI
Ou, Yigui A note on the global convergence theorem of accelerated adaptive Perry conjugate gradient methods. (English) Zbl 1381.90087 J. Comput. Appl. Math. 332, 101-106 (2018). MSC: 90C30 65K05 49M37 PDF BibTeX XML Cite \textit{Y. Ou}, J. Comput. Appl. Math. 332, 101--106 (2018; Zbl 1381.90087) Full Text: DOI
Yao, Shengwei; Ning, Liangshuo An adaptive three-term conjugate gradient method based on self-scaling memoryless BFGS matrix. (English) Zbl 1382.90116 J. Comput. Appl. Math. 332, 72-85 (2018). MSC: 90C53 90C30 49M37 65F15 PDF BibTeX XML Cite \textit{S. Yao} and \textit{L. Ning}, J. Comput. Appl. Math. 332, 72--85 (2018; Zbl 1382.90116) Full Text: DOI
Andrei, Neculai A double parameter scaled BFGS method for unconstrained optimization. (English) Zbl 1422.65084 J. Comput. Appl. Math. 332, 26-44 (2018). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{N. Andrei}, J. Comput. Appl. Math. 332, 26--44 (2018; Zbl 1422.65084) Full Text: DOI
Cipolla, Stefano; Durastante, Fabio Fractional PDE constrained optimization: an optimize-then-discretize approach with L-BFGS and approximate inverse preconditioning. (English) Zbl 1377.65070 Appl. Numer. Math. 123, 43-57 (2018). MSC: 65K10 49J20 49M25 65F08 PDF BibTeX XML Cite \textit{S. Cipolla} and \textit{F. Durastante}, Appl. Numer. Math. 123, 43--57 (2018; Zbl 1377.65070) Full Text: DOI
Liu, Zexian; Liu, Hongwei Several efficient gradient methods with approximate optimal stepsizes for large scale unconstrained optimization. (English) Zbl 1380.90256 J. Comput. Appl. Math. 328, 400-413 (2018). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{H. Liu}, J. Comput. Appl. Math. 328, 400--413 (2018; Zbl 1380.90256) Full Text: DOI
Yuan, Gonglin; Sheng, Zhou; Wang, Bopeng; Hu, Wujie; Li, Chunnian The global convergence of a modified BFGS method for nonconvex functions. (English) Zbl 1370.90203 J. Comput. Appl. Math. 327, 274-294 (2018). MSC: 90C26 PDF BibTeX XML Cite \textit{G. Yuan} et al., J. Comput. Appl. Math. 327, 274--294 (2018; Zbl 1370.90203) Full Text: DOI
Yuan, Gonglin; Wei, Zengxin; Lu, Xiwen Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search. (English) Zbl 1446.65031 Appl. Math. Modelling 47, 811-825 (2017). MSC: 65K05 90C26 PDF BibTeX XML Cite \textit{G. Yuan} et al., Appl. Math. Modelling 47, 811--825 (2017; Zbl 1446.65031) Full Text: DOI
Vlček, Jan; Lukšan, Ladislav A generalized limited-memory BNS method based on the block BFGS update. (English) Zbl 1413.65251 Chleboun, J. (ed.) et al., Programs and algorithms of numerical mathematics 18. Proceedings of the 18th seminar (PANM), Janov nad Nisou, Czech Republic, June 19–24, 2016. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 164-171 (2017). Reviewer: Ctirad Matonoha (Prague) MSC: 65K10 49M15 90C06 PDF BibTeX XML Cite \textit{J. Vlček} and \textit{L. Lukšan}, in: Programs and algorithms of numerical mathematics 18. Proceedings of the 18th seminar (PANM), Janov nad Nisou, Czech Republic, June 19--24, 2016. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 164--171 (2017; Zbl 1413.65251) Full Text: DOI
Degaichia, Hakima; Boulaaras, Salah A new proof for the global convergence of the BFGS method for nonconvex unconstrained minimization problems. (English) Zbl 06844498 Ital. J. Pure Appl. Math. 38, 469-486 (2017). MSC: 90C26 PDF BibTeX XML Cite \textit{H. Degaichia} and \textit{S. Boulaaras}, Ital. J. Pure Appl. Math. 38, 469--486 (2017; Zbl 06844498) Full Text: Link
Bergamaschi, Luca; Martínez, Ángeles Two-stage spectral preconditioners for iterative eigensolvers. (English) Zbl 1424.65038 Numer. Linear Algebra Appl. 24, No. 3, e2084, 14 p. (2017). MSC: 65F15 65F08 65F10 65F50 PDF BibTeX XML Cite \textit{L. Bergamaschi} and \textit{Á. Martínez}, Numer. Linear Algebra Appl. 24, No. 3, e2084, 14 p. (2017; Zbl 1424.65038) Full Text: DOI
Li, Xiangrong; Wang, Bopeng; Hu, Wujie A modified nonmonotone BFGS algorithm for unconstrained optimization. (English) Zbl 1372.65179 J. Inequal. Appl. 2017, Paper No. 183, 18 p. (2017). MSC: 65K05 90C26 PDF BibTeX XML Cite \textit{X. Li} et al., J. Inequal. Appl. 2017, Paper No. 183, 18 p. (2017; Zbl 1372.65179) Full Text: DOI
Andrei, Neculai Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling memoryless BFGS update. (English) Zbl 1365.65158 J. Comput. Appl. Math. 325, 149-164 (2017). MSC: 65K05 90C06 PDF BibTeX XML Cite \textit{N. Andrei}, J. Comput. Appl. Math. 325, 149--164 (2017; Zbl 1365.65158) Full Text: DOI
Babaie-Kafaki, Saman; Ghanbari, Reza A class of descent four-term extension of the Dai-Liao conjugate gradient method based on the scaled memoryless BFGS update. (English) Zbl 1365.65159 J. Ind. Manag. Optim. 13, No. 2, 649-658 (2017). MSC: 65K05 90C53 49M37 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki} and \textit{R. Ghanbari}, J. Ind. Manag. Optim. 13, No. 2, 649--658 (2017; Zbl 1365.65159) Full Text: DOI
Wang, Xiao; Ma, Shiqian; Goldfarb, Donald; Liu, Wei Stochastic quasi-Newton methods for nonconvex stochastic optimization. (English) Zbl 1365.90182 SIAM J. Optim. 27, No. 2, 927-956 (2017). MSC: 90C15 90C30 62L20 90C60 PDF BibTeX XML Cite \textit{X. Wang} et al., SIAM J. Optim. 27, No. 2, 927--956 (2017; Zbl 1365.90182) Full Text: DOI arXiv
Babaie-Kafaki, Saman; Ghanbari, Reza A class of adaptive dai-liao conjugate gradient methods based on the scaled memoryless BFGS update. (English) Zbl 1360.90293 4OR 15, No. 1, 85-92 (2017). MSC: 90C53 49M37 65K05 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki} and \textit{R. Ghanbari}, 4OR 15, No. 1, 85--92 (2017; Zbl 1360.90293) Full Text: DOI
Nita, C.; Vandewalle, S.; Meyers, J. On the efficiency of gradient based optimization algorithms for DNS-based optimal control in a turbulent channel flow. (English) Zbl 1390.76061 Comput. Fluids 125, 11-24 (2016). MSC: 76D05 76F65 76M20 76M22 PDF BibTeX XML Cite \textit{C. Nita} et al., Comput. Fluids 125, 11--24 (2016; Zbl 1390.76061) Full Text: DOI
Amini, Keyvan; Bahrami, Somayeh; Amiri, Shadi A nonmonotone modified BFGS algorithm for nonconvex unconstrained optimization problems. (English) Zbl 06749790 Filomat 30, No. 5, 1283-1296 (2016). MSC: 90C30 90C53 PDF BibTeX XML Cite \textit{K. Amini} et al., Filomat 30, No. 5, 1283--1296 (2016; Zbl 06749790) Full Text: DOI
Liu, Li BFGS algorithm by using the decomposition matrix of the correction matrix to obtain the search direction. (Chinese. English summary) Zbl 1374.90363 J. Math., Wuhan Univ. 36, No. 5, 1035-1039 (2016). MSC: 90C30 90C53 PDF BibTeX XML Cite \textit{L. Liu}, J. Math., Wuhan Univ. 36, No. 5, 1035--1039 (2016; Zbl 1374.90363)
Livieris, Ioannis E.; Pintelas, Panagiotis A limited memory descent Perry conjugate gradient method. (English) Zbl 1365.90242 Optim. Lett. 10, No. 8, 1725-1742 (2016). MSC: 90C30 90C52 PDF BibTeX XML Cite \textit{I. E. Livieris} and \textit{P. Pintelas}, Optim. Lett. 10, No. 8, 1725--1742 (2016; Zbl 1365.90242) Full Text: DOI
Shi, Zhanwen; Tang, Xianzhi; Yang, Guanyu; Xiao, Yunhai Cautious BFGS method for matrix largest eigenvalue problem. (Chinese. English summary) Zbl 1363.65103 J. Henan Univ., Nat. Sci. 46, No. 2, 237-242 (2016). MSC: 65K05 65F15 90C20 PDF BibTeX XML Cite \textit{Z. Shi} et al., J. Henan Univ., Nat. Sci. 46, No. 2, 237--242 (2016; Zbl 1363.65103) Full Text: DOI
Nigro, P. S. B.; Anndif, M.; Teixeira, Y.; Pimenta, P. M.; Wriggers, P. An adaptive model order reduction with quasi-Newton method for nonlinear dynamical problems. (English) Zbl 1352.65184 Int. J. Numer. Methods Eng. 106, No. 9, 740-759 (2016). MSC: 65L05 PDF BibTeX XML Cite \textit{P. S. B. Nigro} et al., Int. J. Numer. Methods Eng. 106, No. 9, 740--759 (2016; Zbl 1352.65184) Full Text: DOI
Chang, Jingya; Chen, Yannan; Qi, Liqun Computing eigenvalues of large scale sparse tensors arising from a hypergraph. (English) Zbl 1350.05109 SIAM J. Sci. Comput. 38, No. 6, A3618-A3643 (2016). MSC: 05C65 15A18 15A69 65F15 65K05 90C35 90C53 PDF BibTeX XML Cite \textit{J. Chang} et al., SIAM J. Sci. Comput. 38, No. 6, A3618--A3643 (2016; Zbl 1350.05109) Full Text: DOI arXiv
Zhang, Lei; Wang, Jue; Feng, Lixin; Li, Yuan Multi-parameter identification and shape reconstruction for unbounded fractal rough surfaces with tapered wave incidence. (English) Zbl 1348.78017 Inverse Probl. Sci. Eng. 24, No. 7, 1282-1301 (2016). MSC: 78A46 78A45 65N21 45Q05 35J05 PDF BibTeX XML Cite \textit{L. Zhang} et al., Inverse Probl. Sci. Eng. 24, No. 7, 1282--1301 (2016; Zbl 1348.78017) Full Text: DOI
Martínez, Ángeles Tuned preconditioners for the eigensolution of large SPD matrices arising in engineering problems. (English) Zbl 1413.65101 Numer. Linear Algebra Appl. 23, No. 3, 427-443 (2016). MSC: 65F15 65F08 PDF BibTeX XML Cite \textit{Á. Martínez}, Numer. Linear Algebra Appl. 23, No. 3, 427--443 (2016; Zbl 1413.65101) Full Text: DOI
Wang, Yong; Zhou, Guanglu; Zhang, Xin; Liu, Wanquan; Caccetta, Louis The non-convex sparse problem with nonnegative constraint for signal reconstruction. (English) Zbl 1353.65058 J. Optim. Theory Appl. 170, No. 3, 1009-1025 (2016). Reviewer: Başak Akteke-Öztürk (Ankara) MSC: 65K05 90C27 90C26 94A12 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Optim. Theory Appl. 170, No. 3, 1009--1025 (2016; Zbl 1353.65058) Full Text: DOI
Shen, Chungen; Zhang, Lei-Hong; Yang, Wei Hong A filter active-set algorithm for ball/sphere constrained optimization problem. (English) Zbl 1342.65146 SIAM J. Optim. 26, No. 3, 1429-1464 (2016). MSC: 65K05 90C30 PDF BibTeX XML Cite \textit{C. Shen} et al., SIAM J. Optim. 26, No. 3, 1429--1464 (2016; Zbl 1342.65146) Full Text: DOI
Akram, Muhammad; Akmal, Rabia Certain operations on bipolar fuzzy graph structures. (English) Zbl 1401.05246 Appl. Appl. Math. 11, No. 1, 443-468 (2016). MSC: 05C72 05C76 PDF BibTeX XML Cite \textit{M. Akram} and \textit{R. Akmal}, Appl. Appl. Math. 11, No. 1, 443--468 (2016; Zbl 1401.05246) Full Text: Link
Babaie-Kafaki, Saman A modified scaling parameter for the memoryless BFGS updating formula. (English) Zbl 1342.90227 Numer. Algorithms 72, No. 2, 425-433 (2016). MSC: 90C53 49M37 65F15 PDF BibTeX XML Cite \textit{S. Babaie-Kafaki}, Numer. Algorithms 72, No. 2, 425--433 (2016; Zbl 1342.90227) Full Text: DOI
Larsson, Lisa J.; Choksi, Rustum; Nave, Jean-Christophe Geometric self-assembly of rigid shapes: a simple Voronoi approach. (English) Zbl 1382.65054 SIAM J. Appl. Math. 76, No. 3, 1101-1125 (2016). MSC: 65D18 65K10 68U05 49M15 PDF BibTeX XML Cite \textit{L. J. Larsson} et al., SIAM J. Appl. Math. 76, No. 3, 1101--1125 (2016; Zbl 1382.65054) Full Text: DOI
Yousefpour, Rohollah Combination of steepest descent and BFGS methods for nonconvex nonsmooth optimization. (English) Zbl 1338.49071 Numer. Algorithms 72, No. 1, 57-90 (2016). MSC: 49M30 49J52 90C26 PDF BibTeX XML Cite \textit{R. Yousefpour}, Numer. Algorithms 72, No. 1, 57--90 (2016; Zbl 1338.49071) Full Text: DOI
Shi, Zhanwen; Yang, Guanyu; Xiao, Yunhai A limited memory BFGS algorithm for non-convex minimization with applications in matrix largest eigenvalue problem. (English) Zbl 1336.90088 Math. Methods Oper. Res. 83, No. 2, 243-264 (2016). MSC: 90C30 65K05 90C53 PDF BibTeX XML Cite \textit{Z. Shi} et al., Math. Methods Oper. Res. 83, No. 2, 243--264 (2016; Zbl 1336.90088) Full Text: DOI
Gu, Chao; Zhu, Detong Convergence of a three-dimensional dwindling filter algorithm without feasibility restoration phase. (English) Zbl 1338.90392 Numer. Funct. Anal. Optim. 37, No. 3, 324-341 (2016). MSC: 90C30 65K05 PDF BibTeX XML Cite \textit{C. Gu} and \textit{D. Zhu}, Numer. Funct. Anal. Optim. 37, No. 3, 324--341 (2016; Zbl 1338.90392) Full Text: DOI