×

Baxter-Guttman-Jensen conjecture for power series in directed percolation problem. (English) Zbl 0935.60088

Summary: A probabilistic model of a flow of fluid through a random medium, percolation model, provides a typical example of statistical mechanical problems which are easy to describe but difficult to solve. While the percolation problem on undirected planar lattices is exactly solved as a limit of the Potts models, there still has been no exact solution for the directed lattices. The most reliable method to provide good approximations is a numerical estimation using finite power-series expansion data of the infinite formal power series for percolation probability. In order to calculate higher-order terms in power series, R. J. Baxter and A. J. Guttmann [J. Phys. A 21, No. 15, 3193-3204 (1988; Zbl 0653.60109)] and I. Jensen and A. J. Guttmann [ibid 28, No. 17, 4813-4833 (1995; Zbl 0868.60085)] proposed an extrapolation procedure based on the assumption that the correction terms, which show the difference between the exact infinite power series and approximate finite series, are expressed as linear combinations of the Catalan numbers.
Starting from a brief review on the directed percolation problem and the observation by Baxter, Guttmann, and Jensen, we state some theorems in which we explain the reason why the combinatorial numbers appear in the correction terms of power series. In the proofs of our theorems, we show several useful combinatorial identities for the ballot numbers, which become the Catalan numbers in a special case. These identities ensure that a summation of products of the ballot numbers with polynomial coefficients can be expanded using the ballot numbers. There is still a gap between our theorems and the Baxter-Guttmann-Jensen observation, and we also give some conjectures. As a generalization of the percolation problem on a directed planar lattice, we present two topics at the end of this paper: the friendly walker problem and the stochastic cellular automata in higher dimensions. We hope that these two topics as well as the directed percolation problem will be of much interest to researchers of combinatorics.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
30B10 Power series (including lacunary series) in one complex variable
05A19 Combinatorial identities, bijective combinatorics
82C43 Time-dependent percolation in statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Aizenman, The geometry of critical percolation and conformal invariance, In: STATPHYS 19, The 19th IUPAP International Conference on Statistical Physics, World Scientific, Singapore, 1997, pp. 104–120.
[2] D.K. Arrowsmith and J.W. Essam, Extension of the Kasteleyn-Fortuin formulas to directed percolation, Phys. Rev. Lett.65 (1990) 3068–3071. · Zbl 0984.82507 · doi:10.1103/PhysRevLett.65.3068
[3] D.K. Arrowsmith and J.W. Essam, Chromatic and flow polynomials for directed graphs, J. Combin. Theory Ser. B62 (1994) 349–362. · Zbl 0807.05031 · doi:10.1006/jctb.1994.1074
[4] D.K. Arrowsmith, P. Mason, and J.W. Essam, Vicious walkers, flows and directed percolation, Physica A177 (1991) 267–272. · doi:10.1016/0378-4371(91)90163-7
[5] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982. · Zbl 0538.60093
[6] R.J. Baxter and A.J. Guttmann, Series expansion of the percolation probability for the directed square lattice, J. Phys. A: Math. Gen.21 (1988) 3193–3204. · Zbl 0653.60109 · doi:10.1088/0305-4470/21/15/008
[7] L.W. Beineke and R.E. Pippert, The number of labeled dissections ofk-ball, Math. Ann.191 (1971) 87–98. · Zbl 0208.52201 · doi:10.1007/BF02330563
[8] J. Blease, Series expansions for the directed-bond percolation problem, J. Phys. C: Solid State Phys.10 (1977) 917–924. · doi:10.1088/0022-3719/10/7/003
[9] M. Bousquet-Mélou, Percolation models and animals, Europ. J. Combin.17 (1996) 343–369. · Zbl 0849.60089 · doi:10.1006/eujc.1996.0029
[10] S.R. Broadbent and J.M. Hammersley, Percolation processes I, Crystals and mazes, Cambin. Phil.53 (1957) 629–641 · Zbl 0091.13901
[11] J.L. Cardy, Conformal invariance, In: Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J.L. Lebowitz, Eds., Academic Press, London, 1987, pp. 55–126.
[12] J.L. Cardy, Critical percolation in finite geometries, J. Phys. A: Math. Gen.25 (1992) L201-L206. · Zbl 0965.82501 · doi:10.1088/0305-4470/25/4/009
[13] J. Cardy and F. Colaiori, Directed percolation and generalized friendly walkers, Phys. Rev. Lett.82 (1999) 2232–2235. · Zbl 1042.82559 · doi:10.1103/PhysRevLett.82.2232
[14] D. Dhar, Diode-resistor percolation in two and three dimensions: I. Upper bounds on critical probability, J. Phys. A: Math. Gen.15 (1982) 1849–1858. · doi:10.1088/0305-4470/15/6/025
[15] E. Domany and W. Kinzel, Equivalence of cellular automata to Ising models and directed percolation, Phys. Rev. Lett.53 (1984) 311–314. · Zbl 1174.82315 · doi:10.1103/PhysRevLett.53.311
[16] R. Durrett, Lecture Notes on Particle Systems and Percolation, Wadsworth & Brooks/Cole, Pacific Grove, California, 1988. · Zbl 0659.60129
[17] J.W. Essam, Percolation and cluster size, In: Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M.S. Green, Eds., Academic Press, London, 1972, pp. 197–270.
[18] J.W. Essam, Percolation theory, Rep. Prog. Phys.43 (1980) 833–912. See also D.K. Arrowsmith and J.W. Essam, Percolation theory on directed graphs, J. Math. Phys.18 (1977) 235–238. · Zbl 0347.05106 · doi:10.1088/0034-4885/43/7/001
[19] J.W. Essam and A.J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Phys. Rev. E52 (1995) 5849–5862. · doi:10.1103/PhysRevE.52.5849
[20] J.W. Essam, A.J. Guttmann, I. Jensen, and D. TanlaKishani, Directed percolation near a wall, J. Phys. A: Math. Gen.29 (1996) 1617–1628. · Zbl 0943.82529 · doi:10.1088/0305-4470/29/8/010
[21] C.M. Fortuin and P.W. Kasteleyn, On the random-cluster model I, Introduction and relation to other models, Physica57 (1972) 536–564. · doi:10.1016/0031-8914(72)90045-6
[22] G. Grimmett, Percolation, 2nd Ed., Springer-Verlag, Berlin, 1999.
[23] A.J. Guttmann, Indicators of solvability for lattice models, 1998, preprint; Discrete Math., to appear. · Zbl 1005.82008
[24] A.J. Guttmann and I.G. Enting, Solvability of some statistical mechanical systems, Phys. Rev. Lett.76 (1996) 344–347. · Zbl 0977.82014 · doi:10.1103/PhysRevLett.76.344
[25] A.J. Guttmann, A.L. Owczarek, and X.G. Viennot, Vicious walkers and Young tableaux I: Without walls, J. Phys. A: Math. Gen.31 (1998) 8123–8135. · Zbl 0930.05098 · doi:10.1088/0305-4470/31/40/007
[26] B.D. Hughes, Random walks and random environments, In: Random Environments, Vol. 2, Clarendon Press, Oxford, 1996. · Zbl 0925.60076
[27] N. Inui, Distribution of poles in a series expansion of the asymmetric directed-bond percolation probability on the square lattice, J. Phys. A: Math. Gen.31 (1998) 9613–9620. · Zbl 0966.82009 · doi:10.1088/0305-4470/31/48/001
[28] N. Inui and M. Katori, Catalan numbers in a series expansion of the directed percolation probability on a square lattice, J. Phys. A: Math. Gen.29 (1996) 4347–4364. · Zbl 0904.60077 · doi:10.1088/0305-4470/29/15/010
[29] N. Inui, M. Katori, G. Komatsu, and K. Kameoka, The number of directed compact site animals and extrapolation formula of directed percolation probability, J. Phys. Soc. Jpn.66 (1997) 1306–1309. · Zbl 1057.82511 · doi:10.1143/JPSJ.66.1306
[30] C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Vol. 2, Cambridge University Press, Cambridge, 1989, Chpt. 9. · Zbl 0825.81001
[31] I. Jensen, Low-density series expansions for directed percolation on square and triangular lattice, J. Phys. A: Math. Gen.29 (1996) 7013–7040. · Zbl 0905.60077 · doi:10.1088/0305-4470/29/22/007
[32] I. Jensen, Temporally disordered bond percolation on the directed square lattice, Phys. Rev. Lett.77 (1996) 4988–4991. · doi:10.1103/PhysRevLett.77.4988
[33] I. Jensen and A.J. Guttmann, Series expansions of the percolation probability for directed square and honeycomb lattices, J. Phys. A: Math. Gen.28 (1995) 4813–4833. · Zbl 0868.60085 · doi:10.1088/0305-4470/28/17/015
[34] I. Jensen and A.J. Guttmann, Series expansions of the percolation probability on the directed triangular lattice, J. Phys. A: Math. Gen.29 (1996) 497–517. · Zbl 0917.60098 · doi:10.1088/0305-4470/29/3/006
[35] I. Jensen and A.J. Guttmann, Extrapolation procedure for low-temperature series for the square lattice spin-1 Ising model, J. Phys. A: Math. Gen.29 (1996) 3817–3836. · Zbl 0900.82020 · doi:10.1088/0305-4470/29/14/010
[36] P.W. Kasteleyn and C.M. Fortuin, Phase transitions in lattice systems with random local properties, J. Phys. Soc. Jpn. Suppl.26 (1969) 11–14.
[37] M. Katori and N. Inui, Ballot number representation of the percolation probability series for the directed square lattice, J. Phys. A: Math. Gen.30 (1997) 2975–2994. · Zbl 0920.60081 · doi:10.1088/0305-4470/30/9/012
[38] M. Katori, N. Inui, G. Komatsu, and K. Kameoka, Hypergeometric series in a series expansion of the directed-bond percolation probability on the square lattice, J. Stat. Phys.86 (1997) 37–55. · Zbl 0937.82019 · doi:10.1007/BF02180198
[39] M. Katori and H. Tsukahara, Two-neighbour stochastic cellular automata and their planar lattice duals, J. Phys. A: Math. Gen.28 (1995) 3935–3957. · Zbl 0875.68661 · doi:10.1088/0305-4470/28/14/014
[40] H. Kesten, Percolation Theory for Mathematicians, Birkhäuser, Boston, 1982. · Zbl 0522.60097
[41] W. Kinzel, Phase transitions of cellular automata, Z. Phys. B58 (1985) 229–244. · Zbl 1174.82316 · doi:10.1007/BF01309255
[42] T.M. Liggett, Survival of discrete time growth models, with applications to oriented percolation, Ann. Appl. Prob.5 (1994) 613–636. · Zbl 0842.60090 · doi:10.1214/aoap/1177004698
[43] P. Martin, Potts Models and Related Problems in Statistical Mechanics, World Scientific, Singapore, 1991. · Zbl 0734.17012
[44] R.N. Onody and U.P.C. Neves, Series expansion of the directed percolation probability, J. Phys. A: Math. Gen.25 (1992) 6609–6615. · Zbl 0770.60091 · doi:10.1088/0305-4470/25/24/014
[45] J. Riordan, Combinatorial Identities, Robert E. Krieger, Huntington, New York, 1979. · Zbl 0194.00502
[46] N.J.A. Sloane, A Handbook of Integer Sequences, Academic Press, New York, 1973. · Zbl 0286.10001
[47] H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin, 1991. · Zbl 0742.76002
[48] R.P. Stanley, Differential finite power series, Europ. J. Combin.1 (1980) 175–188. · Zbl 0445.05012
[49] D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd Ed., Taylor & Francis, London, 1992. · Zbl 0862.60092
[50] T. Tsuchiya and M. Katori, Chiral Potts models, friendly walkers and directed percolation problem, J. Phys. Soc. Jpn.67 (1998) 1655–1666. · doi:10.1143/JPSJ.67.1655
[51] F.Y. Wu, The Potts model, Rev. Mod. Phys.54 (1982) 235–268. · doi:10.1103/RevModPhys.54.235
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.