Khemis, Rabah Existence, uniqueness and stability of positive periodic solutions for an iterative Nicholson’s blowflies equation. (English) Zbl 07734311 J. Appl. Math. Comput. 69, No. 2, 1903-1916 (2023). MSC: 34A12 39B12 34K13 47H10 PDF BibTeX XML Cite \textit{R. Khemis}, J. Appl. Math. Comput. 69, No. 2, 1903--1916 (2023; Zbl 07734311) Full Text: DOI
Konwar, Nabanita; Debnath, Pradip; Radenović, Stojan; Aydi, Hassen A new extension of Banach-Caristi theorem and its application to nonlinear functional equations. (English) Zbl 1516.54035 Kragujevac J. Math. 47, No. 3, 409-416 (2023). MSC: 54H25 54E40 54E50 39B52 PDF BibTeX XML Cite \textit{N. Konwar} et al., Kragujevac J. Math. 47, No. 3, 409--416 (2023; Zbl 1516.54035) Full Text: DOI Link
Abbas, Ahsan; Mehmood, Nayyar; Akgül, Ali; Abdeljawad, Thabet; Alqudah, Manar A. Existence results for multi-term fractional differential equations with nonlocal boundary conditions involving atangana-baleanu derivative. (English) Zbl 07700472 Fractals 31, No. 2, Article ID 2340024, 19 p. (2023). MSC: 26Axx 34Axx 34Kxx PDF BibTeX XML Cite \textit{A. Abbas} et al., Fractals 31, No. 2, Article ID 2340024, 19 p. (2023; Zbl 07700472) Full Text: DOI
Mehmood, Nayyar; Abbas, Ahsan; Akgül, Ali; Abdeljawad, Thabet; Alqudah, Manar A. Existence and stability results for coupled system of fractional differential equations Involving AB-Caputo derivative. (English) Zbl 07700471 Fractals 31, No. 2, Article ID 2340023, 16 p. (2023). MSC: 34A08 34B15 34D10 47N20 PDF BibTeX XML Cite \textit{N. Mehmood} et al., Fractals 31, No. 2, Article ID 2340023, 16 p. (2023; Zbl 07700471) Full Text: DOI
Nwaigwe, Chinedu; Benedict, Deborah Ngochinma Generalized Banach fixed-point theorem and numerical discretization for nonlinear Volterra-Fredholm equations. (English) Zbl 07700223 J. Comput. Appl. Math. 425, Article ID 115019, 10 p. (2023). MSC: 65Rxx 45Gxx 45Dxx PDF BibTeX XML Cite \textit{C. Nwaigwe} and \textit{D. N. Benedict}, J. Comput. Appl. Math. 425, Article ID 115019, 10 p. (2023; Zbl 07700223) Full Text: DOI
Benkhettou, Nadia; Salim, Abdelkrim; Lazreg, Jamal Eddine; Abbas, Saïd; Benchohra, Mouffak Lakshmikantham monotone iterative principle for hybrid Atangana-Baleanu-Caputo fractional differential equations. (English) Zbl 07692942 An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 79-91 (2023). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{N. Benkhettou} et al., An. Univ. Vest Timiș., Ser. Mat.-Inform. 59, No. 1, 79--91 (2023; Zbl 07692942) Full Text: DOI
Taş, N. Topological and geometric approach to the fixed-point theory with leakly rectified linear unit application. (English) Zbl 1516.54057 Acta Math. Univ. Comen., New Ser. 92, No. 1, 91-100 (2023). Reviewer: Zoran D. Mitrović (Banja Luka) MSC: 54H25 47H09 47H10 PDF BibTeX XML Cite \textit{N. Taş}, Acta Math. Univ. Comen., New Ser. 92, No. 1, 91--100 (2023; Zbl 1516.54057) Full Text: Link
Vyavahare, Dayanand K.; Kharat, Vinod V. A positive solution of mixed non-linear fractional delay differential equations with integral boundary conditions. (English) Zbl 07688024 J. Math. Res. Appl. 43, No. 2, 213-226 (2023). MSC: 26A33 34A08 34A12 34K20 37C25 PDF BibTeX XML Cite \textit{D. K. Vyavahare} and \textit{V. V. Kharat}, J. Math. Res. Appl. 43, No. 2, 213--226 (2023; Zbl 07688024) Full Text: DOI
Liu, Yuxuan; Jiang, Zhengjun; Zhang, Yiwen \(q\)-scale function, Banach contraction principle, and ultimate ruin probability in a Markov-modulated jump-diffusion risk model. (English) Zbl 1508.91480 Scand. Actuar. J. 2023, No. 1, 38-50 (2023). MSC: 91G05 60K37 60J74 PDF BibTeX XML Cite \textit{Y. Liu} et al., Scand. Actuar. J. 2023, No. 1, 38--50 (2023; Zbl 1508.91480) Full Text: DOI
Nwaigwe, Chinedu Solvability and approximation of nonlinear functional mixed Volterra-Fredholm equation in Banach space. (English) Zbl 1515.65332 J. Integral Equations Appl. 34, No. 4, 489-500 (2022). MSC: 65R20 45G10 45N05 65D32 PDF BibTeX XML Cite \textit{C. Nwaigwe}, J. Integral Equations Appl. 34, No. 4, 489--500 (2022; Zbl 1515.65332) Full Text: DOI Link
Lee, Hyun Mork On Stepanov weighted pseudo almost automorphic solutions of neural networks. (English) Zbl 1502.34015 Korean J. Math. 30, No. 3, 491-502 (2022). MSC: 34A12 34K14 92B20 PDF BibTeX XML Cite \textit{H. M. Lee}, Korean J. Math. 30, No. 3, 491--502 (2022; Zbl 1502.34015) Full Text: DOI
Liu, Yuxuan; Jiang, Zhengjun; Qu, Yixin Gambler’s ruin problem in a Markov-modulated jump-diffusion risk model. (English) Zbl 1501.91157 Scand. Actuar. J. 2022, No. 8, 682-694 (2022). MSC: 91G05 60J70 PDF BibTeX XML Cite \textit{Y. Liu} et al., Scand. Actuar. J. 2022, No. 8, 682--694 (2022; Zbl 1501.91157) Full Text: DOI
Bugajewski, Dariusz; Maćkowiak, Piotr; Wang, Ruidong On compactness and fixed point theorems in partial metric spaces. (English) Zbl 1501.54025 Fixed Point Theory 23, No. 1, 163-178 (2022). Reviewer: Monica-Felicia Bota (Cluj-Napoca) MSC: 54H25 47H10 54E35 54E50 PDF BibTeX XML Cite \textit{D. Bugajewski} et al., Fixed Point Theory 23, No. 1, 163--178 (2022; Zbl 1501.54025) Full Text: arXiv Link
Solís, Soveny; Vergara, Vicente A non-linear stable non-Gaussian process in fractional time. (English) Zbl 07585064 Topol. Methods Nonlinear Anal. 59, No. 2B, 987-1028 (2022). MSC: 47G10 47D07 47G30 60G52 PDF BibTeX XML Cite \textit{S. Solís} and \textit{V. Vergara}, Topol. Methods Nonlinear Anal. 59, No. 2B, 987--1028 (2022; Zbl 07585064) Full Text: DOI arXiv
El Khannoussi, Mohammed Said; Zertiti, Abderrahim Bounds for the spectral radius of positive operators. (English) Zbl 1500.47059 Electron. J. Differ. Equ. 2022, Paper No. 29, 7 p. (2022). MSC: 47B65 47A10 47H07 47H10 PDF BibTeX XML Cite \textit{M. S. El Khannoussi} and \textit{A. Zertiti}, Electron. J. Differ. Equ. 2022, Paper No. 29, 7 p. (2022; Zbl 1500.47059) Full Text: Link
Han, Xiaoling; Cai, Huize; Yang, Hujun Existence and uniqueness of solutions for the boundary value problems of nonlinear fractional differential equations on star graph. (Chinese. English summary) Zbl 1513.34134 Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 139-156 (2022). MSC: 34B45 34A08 34L05 47N20 PDF BibTeX XML Cite \textit{X. Han} et al., Acta Math. Sci., Ser. A, Chin. Ed. 42, No. 1, 139--156 (2022; Zbl 1513.34134) Full Text: Link
Refice, Ahmed; Inc, Mustafa; Hashemi, Mir Sajjad; Souid, Mohammed Said Boundary value problem of Riemann-Liouville fractional differential equations in the variable exponent Lebesgue spaces \(L^{p(.)}\). (English) Zbl 1507.26014 J. Geom. Phys. 178, Article ID 104554, 13 p. (2022). Reviewer: Fatima Zohra Berrabah (Sidi Bel Abbès) MSC: 26A33 34K37 PDF BibTeX XML Cite \textit{A. Refice} et al., J. Geom. Phys. 178, Article ID 104554, 13 p. (2022; Zbl 1507.26014) Full Text: DOI
Hamoud, Ahmed A.; Ghadle, Kirtiwant P. Some new uniqueness results of solutions for fractional Volterra-Fredholm integro-differential equations. (English) Zbl 1501.45008 Iran. J. Math. Sci. Inform. 17, No. 1, 135-144 (2022). MSC: 45J05 45D05 45B05 26A33 26D10 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{K. P. Ghadle}, Iran. J. Math. Sci. Inform. 17, No. 1, 135--144 (2022; Zbl 1501.45008) Full Text: Link
Younis, Mudasir; Singh, Deepak; Shi, Luoyi Revisiting graphical rectangular \(b\)-metric spaces. (English) Zbl 1487.54077 Asian-Eur. J. Math. 15, No. 4, Article ID 2250072, 9 p. (2022). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{M. Younis} et al., Asian-Eur. J. Math. 15, No. 4, Article ID 2250072, 9 p. (2022; Zbl 1487.54077) Full Text: DOI
Nagarajan, M.; Radhakrishnan, B.; Anukokila, P. Existence results for Sobolev type fuzzy integrodifferential evolution equation. (English) Zbl 1487.34059 Palest. J. Math. 11, Spec. Iss. I, 133-140 (2022). MSC: 34A37 47D06 47H10 74H20 34K40 PDF BibTeX XML Cite \textit{M. Nagarajan} et al., Palest. J. Math. 11, 133--140 (2022; Zbl 1487.34059) Full Text: Link
Sintunavarat, Wutiphol; Turab, Ali Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. (English) Zbl 07529653 Math. Comput. Simul. 198, 65-84 (2022). MSC: 92-XX 34-XX PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{A. Turab}, Math. Comput. Simul. 198, 65--84 (2022; Zbl 07529653) Full Text: DOI Link
Jiang, Zhengjun Banach contraction principle, \(q\)-scale function and ultimate ruin probability under a Markov-modulated classical risk model. (English) Zbl 1492.91300 Scand. Actuar. J. 2022, No. 3, 234-243 (2022). Reviewer: Emilia Di Lorenzo (Napoli) MSC: 91G05 60K37 60J70 PDF BibTeX XML Cite \textit{Z. Jiang}, Scand. Actuar. J. 2022, No. 3, 234--243 (2022; Zbl 1492.91300) Full Text: DOI
Benmezai, Abdelhamid; Benkaci-Ali, Nadir Krein-Rutman operators and a variant of Banach contraction principle in ordered Banach spaces. (English) Zbl 07691445 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 64(112), No. 3, 255-280 (2021). MSC: 47H07 47A10 34B05 PDF BibTeX XML Cite \textit{A. Benmezai} and \textit{N. Benkaci-Ali}, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 64(112), No. 3, 255--280 (2021; Zbl 07691445)
Choudhury, Binayak S.; Metiya, Nikhilesh Basic fixed point theorems in metric spaces. (English) Zbl 1502.54028 Debnath, Pradip (ed.) et al., Metric fixed point theory. Applications in science, engineering and behavioural sciences. Singapore: Springer. Forum Interdiscip. Math., 1-36 (2021). MSC: 54H25 47H10 54-02 47-02 PDF BibTeX XML Cite \textit{B. S. Choudhury} and \textit{N. Metiya}, in: Metric fixed point theory. Applications in science, engineering and behavioural sciences. Singapore: Springer. 1--36 (2021; Zbl 1502.54028) Full Text: DOI
Devi, Amita; Kumar, Anoop Existence and uniqueness results for integro fractional differential equations with Atangana-Baleanu fractional derivative. (English) Zbl 07566774 J. Math. Ext. 15, No. 5, Paper No. 30, 24 p. (2021). MSC: 34A08 26A33 34A12 PDF BibTeX XML Cite \textit{A. Devi} and \textit{A. Kumar}, J. Math. Ext. 15, No. 5, Paper No. 30, 24 p. (2021; Zbl 07566774) Full Text: DOI
Li, Chenkuan On the nonlinear Hadamard-type integro-differential equation. (English) Zbl 07525611 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 7, 15 p. (2021). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{C. Li}, Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 7, 15 p. (2021; Zbl 07525611) Full Text: DOI
Boukehila, Ahcene Existence of solutions of boundary value problems for nonlinear fractional differential equations with integral conditions. (English) Zbl 1502.34003 Proyecciones 40, No. 5, 1117-1135 (2021). MSC: 34A08 34B10 34B15 34B27 47N20 PDF BibTeX XML Cite \textit{A. Boukehila}, Proyecciones 40, No. 5, 1117--1135 (2021; Zbl 1502.34003) Full Text: DOI
Turab, Ali; Sintunavarat, Wutiphol On the solvability of a nonlinear Langevin equation involving two fractional orders in different intervals. (English) Zbl 1500.34011 Nonlinear Funct. Anal. Appl. 26, No. 5, 1021-1034 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{A. Turab} and \textit{W. Sintunavarat}, Nonlinear Funct. Anal. Appl. 26, No. 5, 1021--1034 (2021; Zbl 1500.34011) Full Text: Link
Bachar, Imed; Mâagli, Habib; Eltayeb, Hassan Existence and uniqueness of solutions for a class of fractional nonlinear boundary value problems under mild assumptions. (English) Zbl 1485.34026 Adv. Difference Equ. 2021, Paper No. 22, 11 p. (2021). MSC: 34A08 34B18 26A33 45J05 PDF BibTeX XML Cite \textit{I. Bachar} et al., Adv. Difference Equ. 2021, Paper No. 22, 11 p. (2021; Zbl 1485.34026) Full Text: DOI
Kittisopaporn, Adisorn; Chansangiam, Pattrawut; Lewkeeratiyutkul, Wicharn Convergence analysis of gradient-based iterative algorithms for a class of rectangular Sylvester matrix equations based on Banach contraction principle. (English) Zbl 1485.65047 Adv. Difference Equ. 2021, Paper No. 17, 17 p. (2021). MSC: 65F45 15A24 15A60 PDF BibTeX XML Cite \textit{A. Kittisopaporn} et al., Adv. Difference Equ. 2021, Paper No. 17, 17 p. (2021; Zbl 1485.65047) Full Text: DOI
Sintunavarat, Wutiphol; Turab, Ali On the novel existence results of solutions for fractional Langevin equation associating with nonlinear fractional orders. (English) Zbl 1496.34023 Thai J. Math. 19, No. 3, 827-841 (2021). MSC: 34A08 34B10 47N20 34A34 PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{A. Turab}, Thai J. Math. 19, No. 3, 827--841 (2021; Zbl 1496.34023) Full Text: Link
Mebawondu, A. A.; Abass, H. A.; Aibinu, M. O.; Narain, O. K. Existence of solution of differential equation via fixed point in complex valued \(b\)-metric spaces. (English) Zbl 1490.54086 Nonlinear Funct. Anal. Appl. 26, No. 2, 303-322 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{A. A. Mebawondu} et al., Nonlinear Funct. Anal. Appl. 26, No. 2, 303--322 (2021; Zbl 1490.54086) Full Text: Link
Auwalu, Abba; Denker, Ali Cone rectangular metric spaces over Banach algebras and fixed point results of T-contraction mappings. (English) Zbl 1479.54066 Ashyralyev, Allaberen (ed.) et al., Functional analysis in interdisciplinary applications II. Collected papers based on the presentations at the mini-symposium, held as part of the fourth international conference on analysis and applied mathematics, ICAAM, September 6–9, 2018. Cham: Springer. Springer Proc. Math. Stat. 351, 107-116 (2021). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{A. Auwalu} and \textit{A. Denker}, Springer Proc. Math. Stat. 351, 107--116 (2021; Zbl 1479.54066) Full Text: DOI
Salim, Abdelkrim; Benchohra, Mouffak; Lazreg, Jamal Eddine; N’Guérékata, Gaston Boundary value problem for nonlinear implicit generalized Hilfer-type fractional differential equations with impulses. (English) Zbl 1482.34191 Abstr. Appl. Anal. 2021, Article ID 5592010, 17 p. (2021). MSC: 34K37 34K20 26A33 PDF BibTeX XML Cite \textit{A. Salim} et al., Abstr. Appl. Anal. 2021, Article ID 5592010, 17 p. (2021; Zbl 1482.34191) Full Text: DOI
Zhou, Jue-liang; Zhang, Shu-qin; He, Yu-bo Existence and stability of solution for nonlinear differential equations with \(\psi \)-Hilfer fractional derivative. (English) Zbl 1476.45010 Appl. Math. Lett. 121, Article ID 107457, 7 p. (2021). MSC: 45M10 26A33 34A08 PDF BibTeX XML Cite \textit{J.-l. Zhou} et al., Appl. Math. Lett. 121, Article ID 107457, 7 p. (2021; Zbl 1476.45010) Full Text: DOI
Barcz, Eugeniusz A new proof and consequences of the fixed point theorem of Matkowski. (English) Zbl 07405809 Ann. Math. Sil. 35, No. 2, 149-157 (2021). MSC: 47H10 54H25 11B39 PDF BibTeX XML Cite \textit{E. Barcz}, Ann. Math. Sil. 35, No. 2, 149--157 (2021; Zbl 07405809) Full Text: DOI
Sun, Xiaoyang; Xu, Run Existence and uniqueness of solutions for a class of boundary value problems of fractional differential equation. (Chinese. English summary) Zbl 1488.34153 J. Qufu Norm. Univ., Nat. Sci. 47, No. 2, 49-54 (2021). MSC: 34B15 34A08 47N20 PDF BibTeX XML Cite \textit{X. Sun} and \textit{R. Xu}, J. Qufu Norm. Univ., Nat. Sci. 47, No. 2, 49--54 (2021; Zbl 1488.34153)
Formica, Maria Rosaria; Ostrovsky, Eugeny; Sirota, Leonid Grand quasi Lebesgue spaces. (English) Zbl 1481.46022 J. Math. Anal. Appl. 504, No. 1, Article ID 125369, 21 p. (2021). Reviewer: Oleksiy Karlovych (Lisboa) MSC: 46E30 PDF BibTeX XML Cite \textit{M. R. Formica} et al., J. Math. Anal. Appl. 504, No. 1, Article ID 125369, 21 p. (2021; Zbl 1481.46022) Full Text: DOI arXiv
Norouzi, Fatemeh; N’guérékata, Gaston M. Existence results to a \(\psi\)-Hilfer neutral fractional evolution equation with infinite delay. (English) Zbl 1476.34163 Nonauton. Dyn. Syst. 8, 101-124 (2021). MSC: 34K37 34K30 47N20 34K40 PDF BibTeX XML Cite \textit{F. Norouzi} and \textit{G. M. N'guérékata}, Nonauton. Dyn. Syst. 8, 101--124 (2021; Zbl 1476.34163) Full Text: DOI
Ullah, Saif; Butt, A. I. K.; Buhader, Anum Aish Numerical investigation with stability analysis of time-fractional Korteweg-de Vries equations. (English) Zbl 1486.65221 Math. Methods Appl. Sci. 44, No. 4, 3111-3126 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M99 44A10 65M12 26A33 35C08 35R11 35Q53 PDF BibTeX XML Cite \textit{S. Ullah} et al., Math. Methods Appl. Sci. 44, No. 4, 3111--3126 (2021; Zbl 1486.65221) Full Text: DOI
Antontsev, Stanislav; Ferreira, Jorge; Pişkin, Erhan Existence and blow up of solutions for a strongly damped Petrovsky equation with variable-exponent nonlinearities. (English) Zbl 1461.35148 Electron. J. Differ. Equ. 2021, Paper No. 06, 18 p. (2021). MSC: 35L35 35L76 35D30 35B44 74K20 PDF BibTeX XML Cite \textit{S. Antontsev} et al., Electron. J. Differ. Equ. 2021, Paper No. 06, 18 p. (2021; Zbl 1461.35148) Full Text: Link
Jahangir, Farhang; Haghmaram, Pouya; Nourouzi, Kourosh A note on \(\mathcal{F}\)-metric spaces. (English) Zbl 1460.54020 J. Fixed Point Theory Appl. 23, No. 1, Paper No. 2, 14 p. (2021). MSC: 54E50 54H25 47H10 PDF BibTeX XML Cite \textit{F. Jahangir} et al., J. Fixed Point Theory Appl. 23, No. 1, Paper No. 2, 14 p. (2021; Zbl 1460.54020) Full Text: DOI
Jang, T. S. Pseudo-parameter iteration method (PIM): a semi-analytic solution procedure for nonlinear problems. (English) Zbl 07323676 Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105733, 20 p. (2021). MSC: 65L99 65L05 PDF BibTeX XML Cite \textit{T. S. Jang}, Commun. Nonlinear Sci. Numer. Simul. 97, Article ID 105733, 20 p. (2021; Zbl 07323676) Full Text: DOI
Zhou, Jue-liang; Zhang, Shu-qin; He, Yu-bo Existence and stability of solution for a nonlinear fractional differential equation. (English) Zbl 1462.34108 J. Math. Anal. Appl. 498, No. 1, Article ID 124921, 14 p. (2021). MSC: 34K37 34K30 34K27 47N20 PDF BibTeX XML Cite \textit{J.-l. Zhou} et al., J. Math. Anal. Appl. 498, No. 1, Article ID 124921, 14 p. (2021; Zbl 1462.34108) Full Text: DOI
Lu, Ziqiang; Zhu, Yuanguo; Xu, Qinqin Asymptotic stability of fractional neutral stochastic systems with variable delays. (English) Zbl 1455.93158 Eur. J. Control 57, 119-124 (2021). MSC: 93D20 93E15 93E03 93C15 26A33 93C43 PDF BibTeX XML Cite \textit{Z. Lu} et al., Eur. J. Control 57, 119--124 (2021; Zbl 1455.93158) Full Text: DOI
Santra, Shyam Sundar Necessary and sufficient condition for oscillatory and asymptotic behaviour of second-order functional differential equations. (English) Zbl 07661739 Kragujevac J. Math. 44, No. 3, 459-473 (2020). MSC: 34C10 34C15 35K40 PDF BibTeX XML Cite \textit{S. S. Santra}, Kragujevac J. Math. 44, No. 3, 459--473 (2020; Zbl 07661739) Full Text: DOI Link
Sonalkar, V. P.; Mohapatra, A. N.; Valaulikar, Y. S. Hyers-Ulam stability of first and second order partial differential equations. (English) Zbl 07582384 Jñānābha 50, No. 2, 38-43 (2020). MSC: 35-XX 26D10 35B35 34K20 39B52 PDF BibTeX XML Cite \textit{V. P. Sonalkar} et al., Jñānābha 50, No. 2, 38--43 (2020; Zbl 07582384) Full Text: Link
Du, Wei-Shih; Rassias, Th. M. Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications. (English) Zbl 1496.54038 Int. J. Nonlinear Anal. Appl. 11, No. 1, 55-66 (2020). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{W.-S. Du} and \textit{Th. M. Rassias}, Int. J. Nonlinear Anal. Appl. 11, No. 1, 55--66 (2020; Zbl 1496.54038) Full Text: DOI
Zhu, Bo; Han, Baoyan; Liu, Lishan; Yu, Wenguang On the fractional partial integro-differential equations of mixed type with non-instantaneous impulses. (English) Zbl 1487.35430 Bound. Value Probl. 2020, Paper No. 154, 11 p. (2020). MSC: 35R11 35R09 35R12 35A01 35A02 35A24 35M10 PDF BibTeX XML Cite \textit{B. Zhu} et al., Bound. Value Probl. 2020, Paper No. 154, 11 p. (2020; Zbl 1487.35430) Full Text: DOI
Parvaneh, Vahid; Khorshidi, Maryam; De La Sen, Manuel; Işık, Hüseyin; Mursaleen, Mohammad Measure of noncompactness and a generalized Darbo’s fixed point theorem and its applications to a system of integral equations. (English) Zbl 1489.47074 Adv. Difference Equ. 2020, Paper No. 243, 13 p. (2020). MSC: 47H08 47H10 47N20 45G15 PDF BibTeX XML Cite \textit{V. Parvaneh} et al., Adv. Difference Equ. 2020, Paper No. 243, 13 p. (2020; Zbl 1489.47074) Full Text: DOI
Butt, Rabia Ilyas; Abdeljawad, Thabet; ur Rehman, Mujeeb Stability analysis by fixed point theorems for a class of non-linear Caputo nabla fractional difference equation. (English) Zbl 1482.39004 Adv. Difference Equ. 2020, Paper No. 209, 11 p. (2020). MSC: 39A13 39A30 47N20 PDF BibTeX XML Cite \textit{R. I. Butt} et al., Adv. Difference Equ. 2020, Paper No. 209, 11 p. (2020; Zbl 1482.39004) Full Text: DOI
Banupriya, K.; Abinaya, S. Neutral impulsive stochastic differential equations driven by fractional Brownian motion with finite delay and Poisson jumps. (English) Zbl 1499.60178 J. Fract. Calc. Appl. 11, No. 1, 11-21 (2020). MSC: 60H10 60G22 35R12 PDF BibTeX XML Cite \textit{K. Banupriya} and \textit{S. Abinaya}, J. Fract. Calc. Appl. 11, No. 1, 11--21 (2020; Zbl 1499.60178) Full Text: Link Link
Kendre, S. D.; Unhale, S. I. On existence, uniqueness and Ulam’s stability results for boundary value problems of fractional iterative integrodifferential equations. (English) Zbl 1483.45009 J. Appl. Math. Comput. 64, No. 1-2, 503-517 (2020). MSC: 45L05 45J05 34K37 45M10 45N05 45G15 PDF BibTeX XML Cite \textit{S. D. Kendre} and \textit{S. I. Unhale}, J. Appl. Math. Comput. 64, No. 1--2, 503--517 (2020; Zbl 1483.45009) Full Text: DOI
Chen, Feng; Ye, Guoju; Liu, Wei; Zhao, Dafang Existence and uniqueness of solution to nonlinear second-order distributional differential equations. (English) Zbl 1488.74078 Hacet. J. Math. Stat. 49, No. 1, 170-179 (2020). MSC: 74H20 81Q15 PDF BibTeX XML Cite \textit{F. Chen} et al., Hacet. J. Math. Stat. 49, No. 1, 170--179 (2020; Zbl 1488.74078)
Unhale, S. I.; Kendre, Subhash D. On existence and uniqueness results for iterative mixed integrodifferential equation of fractional order. (English) Zbl 1474.45080 J. Appl. Anal. 26, No. 2, 263-272 (2020). MSC: 45L05 45B05 45D05 45N05 45G15 PDF BibTeX XML Cite \textit{S. I. Unhale} and \textit{S. D. Kendre}, J. Appl. Anal. 26, No. 2, 263--272 (2020; Zbl 1474.45080) Full Text: DOI
Xu, Baiyan; Jiang, Yicheng; Tian, Jiya Existence of solutions for a class of fractional differential equations with \(p\)-Laplacian operators and integral boundary conditions. (Chinese. English summary) Zbl 1474.34133 Math. Pract. Theory 50, No. 15, 177-183 (2020). MSC: 34B10 34A08 47N20 PDF BibTeX XML Cite \textit{B. Xu} et al., Math. Pract. Theory 50, No. 15, 177--183 (2020; Zbl 1474.34133)
Zhao, Huanhuan; Liu, Youjun; Kang, Shugui Existence of nonoscillatory solutions for fractional differential equations. (Chinese. English summary) Zbl 1474.34555 Appl. Math., Ser. A (Chin. Ed.) 35, No. 3, 275-280 (2020). MSC: 34K42 34K11 34K37 PDF BibTeX XML Cite \textit{H. Zhao} et al., Appl. Math., Ser. A (Chin. Ed.) 35, No. 3, 275--280 (2020; Zbl 1474.34555) Full Text: DOI
Zhao, Huanhuan; Liu, Youjun; Kang, Shugui Existence of nonoscillatory solutions of higher-order neutral differential equations with distributed deviating arguments. (Chinese. English summary) Zbl 1474.34466 Acta Math. Appl. Sin. 43, No. 3, 620-626 (2020). MSC: 34K11 34K40 34K25 47N20 PDF BibTeX XML Cite \textit{H. Zhao} et al., Acta Math. Appl. Sin. 43, No. 3, 620--626 (2020; Zbl 1474.34466)
Lu, Ning; He, Fei; Li, Shufang A note on the paper “A novel approach of graphical rectangular \(b\)-metric spaces with an application to the vibrations of a vertical heavy hanging cable”. (English) Zbl 1458.54019 J. Fixed Point Theory Appl. 22, No. 4, Paper No. 96, 12 p. (2020). MSC: 54E35 05C20 54H25 54E40 45B05 PDF BibTeX XML Cite \textit{N. Lu} et al., J. Fixed Point Theory Appl. 22, No. 4, Paper No. 96, 12 p. (2020; Zbl 1458.54019) Full Text: DOI
Ncube, Israel Existence, uniqueness, and global asymptotic stability of an equilibrium in a multiple unbounded distributed delay network. (English) Zbl 1474.34503 Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 59, 11 p. (2020). MSC: 34K20 92B20 34K21 47N20 PDF BibTeX XML Cite \textit{I. Ncube}, Electron. J. Qual. Theory Differ. Equ. 2020, Paper No. 59, 11 p. (2020; Zbl 1474.34503) Full Text: DOI
Kari, Abdelkarim; Rossafi, Mohamed; Saffaj, Hamza; Marhrani, El Miloudi; Aamri, Mohamed Fixed-point theorems for \(\theta-\phi\)-contraction in generalized asymmetric metric spaces. (English) Zbl 1486.54059 Int. J. Math. Math. Sci. 2020, Article ID 8867020, 19 p. (2020). MSC: 54H25 47H10 54E40 47H09 PDF BibTeX XML Cite \textit{A. Kari} et al., Int. J. Math. Math. Sci. 2020, Article ID 8867020, 19 p. (2020; Zbl 1486.54059) Full Text: DOI
Maqbul, Md. Almost periodic solutions for a class of nonlinear Duffing system with time-varying coefficients and Stepanov-almost periodic forcing terms. (English) Zbl 1486.34138 Nonlinear Dyn. Syst. Theory 20, No. 5, 512-522 (2020). Reviewer: Daria Bbugajewska (Poznań) MSC: 34K14 47N20 37C60 PDF BibTeX XML Cite \textit{Md. Maqbul}, Nonlinear Dyn. Syst. Theory 20, No. 5, 512--522 (2020; Zbl 1486.34138) Full Text: Link
Zhou, Jueliang; He, Yubo; Xie, Leping Existence of solutions for the coupled system of nonlinear fractional differential equations. (Chinese. English summary) Zbl 1463.34029 J. Zhengzhou Univ., Nat. Sci. Ed. 52, No. 3, 87-90 (2020). MSC: 34A08 34A12 34A34 47N20 PDF BibTeX XML Cite \textit{J. Zhou} et al., J. Zhengzhou Univ., Nat. Sci. Ed. 52, No. 3, 87--90 (2020; Zbl 1463.34029) Full Text: DOI
He, Dingyu Existence of solutions for a class of boundary value problem of high-order fractional differential equations. (Chinese. English summary) Zbl 1463.34014 J. Sichuan Univ., Nat. Sci. Ed. 57, No. 3, 443-449 (2020). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{D. He}, J. Sichuan Univ., Nat. Sci. Ed. 57, No. 3, 443--449 (2020; Zbl 1463.34014) Full Text: DOI
Santra, Shyam Sundar Necessary and sufficient conditions for oscillatory and asymptotic behaviour of solutions to second-order nonlinear neutral differential equations with several delays. (English) Zbl 1482.34159 Tatra Mt. Math. Publ. 75, 121-134 (2020). MSC: 34K11 34K25 34K40 47N20 PDF BibTeX XML Cite \textit{S. S. Santra}, Tatra Mt. Math. Publ. 75, 121--134 (2020; Zbl 1482.34159) Full Text: DOI
Feng, Yuqiang; Wang, Yuanyuan; Li, Deyi Comparison theorem and solvability of the boundary value problem of a fractional differential equation. (English) Zbl 1484.34020 Mem. Differ. Equ. Math. Phys. 79, 57-68 (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{Y. Feng} et al., Mem. Differ. Equ. Math. Phys. 79, 57--68 (2020; Zbl 1484.34020) Full Text: Link
Buică, A.; Rus, I. A.; Şerban, M. A. Zero point principle of ball-near identity operators and applications to implicit operator problem. (English) Zbl 1484.47107 Fixed Point Theory 21, No. 1, 79-92 (2020). Reviewer: Zoran D. Mitrović (Banja Luka) MSC: 47H10 47J07 65F10 26B10 58C15 PDF BibTeX XML Cite \textit{A. Buică} et al., Fixed Point Theory 21, No. 1, 79--92 (2020; Zbl 1484.47107) Full Text: Link
Dhanalakshmi, S.; Vinitha, M.; Poongodi, R. Existence and uniqueness of solutions for nonlinear fractional neutral integrodifferential equations with nonlocal boundary conditions. (English) Zbl 1474.45050 Nonlinear Stud. 27, No. 3, 637-646 (2020). MSC: 45J05 34K37 34K40 47N20 47H10 PDF BibTeX XML Cite \textit{S. Dhanalakshmi} et al., Nonlinear Stud. 27, No. 3, 637--646 (2020; Zbl 1474.45050) Full Text: Link
Abdeljawad, Thabet; Ullah, Kifayat; Ahmad, Junaid; de la Sen, Manuel; Khan, Junaid Approximating fixed points of operators satisfying (RCSC) condition in Banach spaces. (English) Zbl 1485.47115 J. Funct. Spaces 2020, Article ID 9851063, 7 p. (2020). Reviewer: Jürgen Appell (Würzburg) MSC: 47J26 47H09 PDF BibTeX XML Cite \textit{T. Abdeljawad} et al., J. Funct. Spaces 2020, Article ID 9851063, 7 p. (2020; Zbl 1485.47115) Full Text: DOI
Turab, Ali; Sintunavarat, Wutiphol On a solution of the probabilistic predator-prey model approached by the fixed point methods. (English) Zbl 1447.92372 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 64, 15 p. (2020). MSC: 92D25 39B82 PDF BibTeX XML Cite \textit{A. Turab} and \textit{W. Sintunavarat}, J. Fixed Point Theory Appl. 22, No. 3, Paper No. 64, 15 p. (2020; Zbl 1447.92372) Full Text: DOI
Zhu, Bo; Han, Baoyan Existence and uniqueness of mild solutions for fractional partial integro-differential equations. (English) Zbl 1452.35248 Mediterr. J. Math. 17, No. 4, Paper No. 113, 12 p. (2020). Reviewer: Mohammed Kaabar (Gelugor) MSC: 35R11 35A01 35A02 35A24 34G20 PDF BibTeX XML Cite \textit{B. Zhu} and \textit{B. Han}, Mediterr. J. Math. 17, No. 4, Paper No. 113, 12 p. (2020; Zbl 1452.35248) Full Text: DOI
He, Fuli; Mostefaoui, Z.; Abdalla, M. Fixed point theorems for Mizoguchi-Takahashi type contraction in bicomplex-valued metric spaces and applications. (English) Zbl 1435.54023 J. Funct. Spaces 2020, Article ID 4070324, 7 p. (2020). MSC: 54H25 54E40 45G10 PDF BibTeX XML Cite \textit{F. He} et al., J. Funct. Spaces 2020, Article ID 4070324, 7 p. (2020; Zbl 1435.54023) Full Text: DOI
Berhail, Amel; Tabouche, Nora; Matar, Mohammed M.; Alzabut, Jehad On nonlocal integral and derivative boundary value problem of nonlinear Hadamard Langevin equation with three different fractional orders. (English) Zbl 1446.34010 Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 303-318 (2020). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{A. Berhail} et al., Bol. Soc. Mat. Mex., III. Ser. 26, No. 2, 303--318 (2020; Zbl 1446.34010) Full Text: DOI
Gu, Chuan-Yun; Li, Hong-Xu Piecewise weighted pseudo almost periodicity of impulsive integro-differential equations with fractional order \(1<\alpha<2\). (English) Zbl 1441.34077 Banach J. Math. Anal. 14, No. 2, 487-502 (2020). MSC: 34K14 34K30 34K37 34K45 45K05 47D03 47N20 PDF BibTeX XML Cite \textit{C.-Y. Gu} and \textit{H.-X. Li}, Banach J. Math. Anal. 14, No. 2, 487--502 (2020; Zbl 1441.34077) Full Text: DOI
Proinov, Petko D. Fixed point theorems for generalized contractive mappings in metric spaces. (English) Zbl 1462.54094 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 21, 27 p. (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{P. D. Proinov}, J. Fixed Point Theory Appl. 22, No. 1, Paper No. 21, 27 p. (2020; Zbl 1462.54094) Full Text: DOI
Som, Sumit; Bera, Ashis; Dey, Lakshmi Kanta Some remarks on the metrizability of \(\mathcal{F}\)-metric spaces. (English) Zbl 1447.54022 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 17, 7 p. (2020). MSC: 54E35 54E50 54H25 PDF BibTeX XML Cite \textit{S. Som} et al., J. Fixed Point Theory Appl. 22, No. 1, Paper No. 17, 7 p. (2020; Zbl 1447.54022) Full Text: DOI arXiv
Sahin, Hakan; Aslantas, Mustafa; Altun, Ishak Feng-Liu type approach to best proximity point results for multivalued mappings. (English) Zbl 1431.54039 J. Fixed Point Theory Appl. 22, No. 1, Paper No. 11, 13 p. (2020). Reviewer: Vasile Berinde (Baia Mare) MSC: 54H25 54C60 54E40 54E50 PDF BibTeX XML Cite \textit{H. Sahin} et al., J. Fixed Point Theory Appl. 22, No. 1, Paper No. 11, 13 p. (2020; Zbl 1431.54039) Full Text: DOI
Ahmad, Manzoor; Zada, Akbar; Alzabut, Jehad Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with \(p\)-Laplacian. (English) Zbl 1487.34004 Adv. Difference Equ. 2019, Paper No. 436, 22 p. (2019). MSC: 34A08 26A33 47N20 34K37 PDF BibTeX XML Cite \textit{M. Ahmad} et al., Adv. Difference Equ. 2019, Paper No. 436, 22 p. (2019; Zbl 1487.34004) Full Text: DOI
Alqahtani, Obaid; Karapınar, Erdal; Shahi, Priya Common fixed point results in function weighted metric spaces. (English) Zbl 1499.54152 J. Inequal. Appl. 2019, Paper No. 164, 9 p. (2019). MSC: 54H25 54E50 54A20 47H10 PDF BibTeX XML Cite \textit{O. Alqahtani} et al., J. Inequal. Appl. 2019, Paper No. 164, 9 p. (2019; Zbl 1499.54152) Full Text: DOI
Muni, Vijayakumar S.; George, Raju K. Controllability of semilinear impulsive control systems with multiple time delays in control. (English) Zbl 1475.93014 IMA J. Math. Control Inf. 36, No. 3, 869-899 (2019). MSC: 93B05 93C27 93C10 93C43 93C15 34A37 PDF BibTeX XML Cite \textit{V. S. Muni} and \textit{R. K. George}, IMA J. Math. Control Inf. 36, No. 3, 869--899 (2019; Zbl 1475.93014) Full Text: DOI
Zhou, Yong; Suganya, S.; Arjunan, M. Mallika; Ahmad, B. Approximate controllability of impulsive fractional integro-differential equation with state-dependent delay in Hilbert spaces. (English) Zbl 1475.93019 IMA J. Math. Control Inf. 36, No. 2, 603-622 (2019). MSC: 93B05 93C27 93C15 34A37 26A33 93C25 PDF BibTeX XML Cite \textit{Y. Zhou} et al., IMA J. Math. Control Inf. 36, No. 2, 603--622 (2019; Zbl 1475.93019) Full Text: DOI
Sutar, Sagar T.; Kucche, Kishor D. On fractional Volterra integrodifferential equations with fractional integrable impulses. (English) Zbl 1469.34107 Math. Model. Anal. 24, No. 3, 457-477 (2019). MSC: 34K45 34K30 34K37 45J05 PDF BibTeX XML Cite \textit{S. T. Sutar} and \textit{K. D. Kucche}, Math. Model. Anal. 24, No. 3, 457--477 (2019; Zbl 1469.34107) Full Text: DOI arXiv
Hussain, Khawlah H.; Hamoud, Ahmed A.; Mohammed, Nedal M. Some new uniqueness results for fractional integro-differential equations. (English) Zbl 1445.45014 Nonlinear Funct. Anal. Appl. 24, No. 4, 827-836 (2019). MSC: 45J05 26A33 34A08 PDF BibTeX XML Cite \textit{K. H. Hussain} et al., Nonlinear Funct. Anal. Appl. 24, No. 4, 827--836 (2019; Zbl 1445.45014)
Cheng, Rong; Ye, Guoju; Liu, Wei; Zhao, Dafang Existence and uniqueness of solutions for a class of integro-differential equation. (Chinese. English summary) Zbl 1449.45014 J. Jilin Univ., Sci. 57, No. 2, 213-218 (2019). MSC: 45J05 26A39 PDF BibTeX XML Cite \textit{R. Cheng} et al., J. Jilin Univ., Sci. 57, No. 2, 213--218 (2019; Zbl 1449.45014) Full Text: DOI
Han, Sang-Eon Estimation of the complexity of a digital image from the viewpoint of fixed point theory. (English) Zbl 1428.54014 Appl. Math. Comput. 347, 236-248 (2019). MSC: 54H25 47H10 54E35 68U10 PDF BibTeX XML Cite \textit{S.-E. Han}, Appl. Math. Comput. 347, 236--248 (2019; Zbl 1428.54014) Full Text: DOI
Gautier, Antoine; Tudisco, Francesco; Hein, Matthias The Perron-Frobenius theorem for multihomogeneous mappings. (English) Zbl 07122458 SIAM J. Matrix Anal. Appl. 40, No. 3, 1179-1205 (2019). MSC: 47H07 47J10 15B48 47H09 47H10 PDF BibTeX XML Cite \textit{A. Gautier} et al., SIAM J. Matrix Anal. Appl. 40, No. 3, 1179--1205 (2019; Zbl 07122458) Full Text: DOI arXiv
Hussain, Azhar; Adeel, Muhammad Remarks on “New fixed point theorems for \(\alpha \)-\(H\theta \)-contractions in ordered metric spaces”. (English) Zbl 1423.47024 J. Fixed Point Theory Appl. 21, No. 2, Paper No. 63, 6 p. (2019). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{A. Hussain} and \textit{M. Adeel}, J. Fixed Point Theory Appl. 21, No. 2, Paper No. 63, 6 p. (2019; Zbl 1423.47024) Full Text: DOI
Zhu, Bo; Han, Baoyan; Lin, Xiangyun Existence results for a class of semilinear fractional partial differential equations with delay in Banach spaces. (English) Zbl 1458.35465 J. Funct. Spaces 2019, Article ID 6295019, 7 p. (2019). MSC: 35R11 35K90 35K20 35K58 PDF BibTeX XML Cite \textit{B. Zhu} et al., J. Funct. Spaces 2019, Article ID 6295019, 7 p. (2019; Zbl 1458.35465) Full Text: DOI
Lu, Ning; He, Fei; Huang, Huaping Answers to questions on the generalized Banach contraction conjecture in \(b\)-metric spaces. (English) Zbl 1469.54150 J. Fixed Point Theory Appl. 21, No. 2, Paper No. 43, 10 p. (2019). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{N. Lu} et al., J. Fixed Point Theory Appl. 21, No. 2, Paper No. 43, 10 p. (2019; Zbl 1469.54150) Full Text: DOI
Górnicki, Jarosław Remarks on asymptotic regularity and fixed points. (English) Zbl 1470.54058 J. Fixed Point Theory Appl. 21, No. 1, Paper No. 29, 20 p. (2019). Reviewer: Chuanxi Zhu (Nanchang) MSC: 54H25 54E40 54F05 47H40 60H25 PDF BibTeX XML Cite \textit{J. Górnicki}, J. Fixed Point Theory Appl. 21, No. 1, Paper No. 29, 20 p. (2019; Zbl 1470.54058) Full Text: DOI
Kumar, Surendra; Rastogi, Shard The solvability and controllability of semilinear coupled wave equation. (English) Zbl 1415.35202 Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 30, 12 p. (2019). MSC: 35L71 35L53 93B05 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{S. Rastogi}, Int. J. Appl. Comput. Math. 5, No. 2, Paper No. 30, 12 p. (2019; Zbl 1415.35202) Full Text: DOI
Li, Dong; Guo, Shangjiang Traveling wavefronts in a reaction-diffusion model with chemotaxis and nonlocal delay effect. (English) Zbl 1415.35080 Nonlinear Anal., Real World Appl. 45, 736-754 (2019). MSC: 35C07 35K57 92C17 PDF BibTeX XML Cite \textit{D. Li} and \textit{S. Guo}, Nonlinear Anal., Real World Appl. 45, 736--754 (2019; Zbl 1415.35080) Full Text: DOI
Du, Wei-Shih; Karapınar, Erdal; He, Zhenhua Some simultaneous generalizations of well-known fixed point theorems and their applications to fixed point theory. (English) Zbl 1515.54031 Mathematics 6, No. 7, Paper No. 117, 11 p. (2018). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{W.-S. Du} et al., Mathematics 6, No. 7, Paper No. 117, 11 p. (2018; Zbl 1515.54031) Full Text: DOI
Ege, Ozgur; Karaca, Ismet Complex valued dislocated metric spaces. (English) Zbl 1489.54112 Korean J. Math. 26, No. 4, 809-822 (2018). MSC: 54H25 54E35 54E40 PDF BibTeX XML Cite \textit{O. Ege} and \textit{I. Karaca}, Korean J. Math. 26, No. 4, 809--822 (2018; Zbl 1489.54112) Full Text: DOI
Li, Jialu; Kou, Chunhai Stability analysis of nonlinear fractional differential equations by fixed point theorem. (English) Zbl 1438.34041 Commun. Appl. Math. Comput. 32, No. 4, 772-785 (2018). MSC: 34A08 34D20 47N20 PDF BibTeX XML Cite \textit{J. Li} and \textit{C. Kou}, Commun. Appl. Math. Comput. 32, No. 4, 772--785 (2018; Zbl 1438.34041) Full Text: DOI
Yun, Yongzhen; Su, Youhui; Hu, Weimin Existence and uniqueness of solutions to a class of anti-periodic boundary value problem of fractional differential equations with \(p\)-Laplacian operator. (Chinese. English summary) Zbl 1438.34063 Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 6, 1162-1172 (2018). MSC: 34A08 34B15 34B27 47N20 PDF BibTeX XML Cite \textit{Y. Yun} et al., Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 6, 1162--1172 (2018; Zbl 1438.34063)
Xia, Zhinan; Li, Zihui; Wang, Dingjiang Measure pseudo affine-periodic solutions of semilinear differential equations. (English) Zbl 1420.34070 Math. Commun. 23, No. 2, 259-277 (2018). MSC: 34C25 37C60 34D09 47N20 28A20 PDF BibTeX XML Cite \textit{Z. Xia} et al., Math. Commun. 23, No. 2, 259--277 (2018; Zbl 1420.34070) Full Text: Link
Zhang, Shuqin; Hu, Lei; Sun, Sujing The uniqueness of solution for initial value problems for fractional differential equation involving the Caputo-Fabrizio derivative. (English) Zbl 1449.34040 J. Nonlinear Sci. Appl. 11, No. 3, 428-436 (2018). MSC: 34A08 26A33 34B15 34A12 34A30 47N20 PDF BibTeX XML Cite \textit{S. Zhang} et al., J. Nonlinear Sci. Appl. 11, No. 3, 428--436 (2018; Zbl 1449.34040) Full Text: DOI
Cui, Yujun; Ma, Wenjie; Sun, Qiao; Su, Xinwei New uniqueness results for boundary value problem of fractional differential equation. (English) Zbl 1420.34009 Nonlinear Anal., Model. Control 23, No. 1, 31-39 (2018). MSC: 34A08 34B15 47N20 34B27 PDF BibTeX XML Cite \textit{Y. Cui} et al., Nonlinear Anal., Model. Control 23, No. 1, 31--39 (2018; Zbl 1420.34009) Full Text: DOI
Chen, Feng; Ye, Guoju; Liu, Wei Existence and uniqueness of solutions to nonlinear second-order fuzzy differential equation. (Chinese. English summary) Zbl 1424.34006 J. Hubei Univ., Nat. Sci. 40, No. 6, 657-662, 666 (2018). MSC: 34A07 47N20 34A08 PDF BibTeX XML Cite \textit{F. Chen} et al., J. Hubei Univ., Nat. Sci. 40, No. 6, 657--662, 666 (2018; Zbl 1424.34006) Full Text: DOI