zbMATH — the first resource for mathematics

Inference for the unit-Gompertz model based on record values and inter-record times with an application. (English) Zbl 1461.62057
Summary: J. Mazucheli et al. [“Unit-Gompertz distribution with applications”, Statistica 79, No. 1, 25–43 (2019; doi:10.6092/issn.1973-2201/8497 )] introduced a new transformed model called the unit-Gompertz (UG) distribution which exhibits right-skewed (uni-modal) and reversed-J shaped density and its hazard rate function can be increasing and increasing-decreasing-increasing. They worked on the estimation of the model parameters based on complete data sets. In this paper, by using lower record values and inter-record times, we develop inference procedures for the estimation of the parameters and prediction of future record values for the UG distribution. First, we derive the exact explicit expressions for the single and product moments of lower record values, and then use these results to compute the means, variances and covariances between two lower record values. Next, we obtain the maximum likelihood estimators and associated asymptotic confidence intervals. Further, we obtain the Bayes estimators under the assumption that the model parameters follow a joint bivariate density function. The Bayesian estimation is studied with respect to both symmetric (squared error) and asymmetric (linear-exponential) loss functions with the help of the Tierney-Kadane’s method and Metropolis-Hastings algorithm. Finally, we compute Bayesian point predictors for the future record values. To illustrate the findings, one real data set is analyzed, and Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation and prediction.
62G32 Statistics of extreme values; tail inference
62F10 Point estimation
62F15 Bayesian inference
62F25 Parametric tolerance and confidence regions
Full Text: DOI
[1] Ahsanullah, M., Record Statistics (1995), New York: Nova Science Publishers, New York · Zbl 0907.62017
[2] Al-Hussaini, EK; Jaheen, ZF, Bayesian estimation of the parameters, reliability and failure rate functions of the Burr type XII failure model, J. Stat. Comput. Simul., 41, 31-40 (1992) · Zbl 0775.62260
[3] Amini, M.; MirMostafaee, SMTK, Interval prediction of order statistics based on records by employing inter-record times: a study under two parameter exponential distribution, Metodološki Zveski, 13, 1-15 (2016)
[4] Arnold, BC; Balakrishnan, N.; Nagaraja, HN, Records (1998), New York: John Wiley and Sons, New York
[5] Balakrishnan, N.; Ahsanullah, M., Recurrence relations for single and product moments of record values from generalized Pareto distribution, Commun. Stat. Theory Methods, 23, 2841-2852 (1994) · Zbl 0850.62118
[6] Chandler, KN, The distribution and frequency of record values, J. R. Stat. Soc. Ser. B (Methodol.), 14, 220-228 (1952) · Zbl 0047.38302
[7] Chen, M-H; Shao, Q-M, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8, 69-92 (1999)
[8] Cook, DO; Kieschnick, R.; McCullough, BD, Regression analysis of proportions in finance with self selection, J. Empir. Finance, 15, 860-867 (2008)
[9] Dey, S.; Dey, T.; Salehi, M.; Ahmadi, J., Bayesian inference of generalized exponential distribution based on lower record values, Am. J. Math. Manag. Sci., 32, 1-18 (2013)
[10] Dey, S.; Pradhan, B., Generalized inverted exponential distribution under hybrid censoring, Stat. Methodol., 18, 101-114 (2014) · Zbl 07035569
[11] Fallah, A.; Asgharzadeh, A.; MirMostafaee, SMTK, On the Lindley record values and associated inference, J. Stat. Theory Appl., 17, 686-702 (2018)
[12] Genç, Aİ, Estimation of \(P(X > Y )\) with Topp-Leone distribution, J. Stat. Comput. Simul., 83, 326-339 (2013) · Zbl 1348.62039
[13] Ghitany, ME; Al-Mutairi, DK; Balakrishnan, N.; Al-Enezi, LJ, Power Lindley distribution and associated inference, Comput. Stat. Data Anal., 64, 20-33 (2013) · Zbl 06958940
[14] Glick, N., Breaking records and breaking boards, Am. Math. Mon., 85, 2-26 (1978) · Zbl 0395.62040
[15] Kızılaslan, F.; Nadar, M., Estimation with the generalized exponential distribution based on record values and inter-record times, J. Stat. Comput. Simul., 85, 978-999 (2015) · Zbl 1457.62080
[16] Kızılaslan, F.; Nadar, M., Estimation and prediction of the Kumaraswamy distribution based on record values and inter-record times, J. Stat. Comput. Simul., 86, 2471-2493 (2016) · Zbl 07184745
[17] Kumar, D., Explicit expressions and statistical inference of generalized Rayleigh distribution based on lower record values, Math. Methods Stat., 24, 225-241 (2015) · Zbl 1403.62085
[18] Kumar, D., \(K\)-th lower record values from Dagum distribution and characterization, Discuss. Math. Probab. Stat., 36, 25-41 (2016)
[19] Kumar, D.; Dey, T.; Dey, S., Statistical inference of exponentiated moment exponential distribution based on lower record values, Commun. Math. Stat., 5, 231-260 (2017) · Zbl 1380.62065
[20] Marinho, P.R.D., Bourguignon, M., Dias, C.R.B.: Adequacy Model: adequacy of probabilistic models and generation of pseudo-random numbers, R package version 1.0.8. https://CRAN.R-project.org/package=AdequacyModel (2013)
[21] Mazucheli, J.; Menezes, AF; Dey, S., Unit-Gompertz distribution with applications, Statistica, 79, 25-43 (2019)
[22] MirMostafaee, SMTK; Asgharzadeh, A.; Fallah, A., Record values from NH distribution and associated inference, Metron, 74, 37-59 (2016) · Zbl 1394.62059
[23] MirMostafaee, SMTK; Mahdizadeh, M.; Aminzadeh, M., Bayesian inference for the Topp-Leone distribution based on lower \(k\)-record values, Jpn. J. Ind. Appl. Math., 33, 637-669 (2016) · Zbl 1362.62056
[24] Nadar, M.; Kızılaslan, F., Estimation and prediction of the Burr type XII distribution based on record values and inter-record times, J. Stat. Comput. Simul., 85, 3297-3321 (2015) · Zbl 07184573
[25] Nadar, M.; Papadopoulos, A.; Kızılaslan, F., Statistical analysis for Kumaraswamy’s distribution based on record data, Stat. Pap., 54, 355-369 (2013) · Zbl 1364.62054
[26] Nevzorov, VB, Records: Mathematical Theory (2001), Providence: American Mathematical Society, Providence
[27] Pak, A.; Dey, S., Statistical inference for the power Lindley model based on record values and inter-record times, J. Comput. Appl. Math., 347, 156-172 (2019) · Zbl 1407.62068
[28] Papke, LE; Wooldridge, JM, Econometric methods for fractional response variables with an application to 401(k) plan participation rates, J. Appl. Econ., 11, 619-632 (1996)
[29] Plummer, M.; Best, N.; Cowles, K.; Vines, K., CODA: convergence diagnosis and output analysis for MCMC, R News, 6, 7-11 (2006)
[30] Plummer, M., Best, N., Cowles, K., Vines, K., Sarkar, D., Bates, D., Almond, R., Magnusson, A.: CODA: output analysis and diagnostics for MCMC, R package version 0.19-2. https://CRAN.R-project.org/package=coda (2018)
[31] R Core Team.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2018)
[32] Resnick, SI, Extreme Values, Regular Variation, and Point Processes (1987), New York: Springer, New York
[33] Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D.: MASS: support functions and datasets for Venables and Ripley’s MASS, R package version 7.3-50. https://CRAN.R-project.org/package=MASS (2018)
[34] Samaniego, FJ; Whitaker, LR, On estimating population characteristics from record-breaking observations. I. Parametric results, Naval Res. Logist. Q., 33, 531-543 (1986) · Zbl 0605.62027
[35] Shorrock, RW, Record values and inter-record times, J. Appl. Probab., 10, 543-555 (1973) · Zbl 0268.60075
[36] Tierney, L.; Kadane, JB, Accurate approximations for posterior moments and marginal densities, J. Am. Stat. Assoc., 81, 82-86 (1986) · Zbl 0587.62067
[37] Venables, WN; Ripley, BD, Modern Applied Statistics with S (2002), New York: Springer, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.