Su, Xiao; Li, Xiao; Wang, Shubin The Cauchy problem for the sixth order \(p\)-generalized Benney-Luke equation. (English) Zbl 07965558 J. Math. Study 57, No. 2, 133-148 (2024). MSC: 35L30 76B15 × Cite Format Result Cite Review PDF Full Text: DOI
Choi, Junho; Kalogirou, Anna; Lu, Yang; Bokhove, Onno; Kelmanson, Mark A study of extreme water waves using a hierarchy of models based on potential-flow theory. (English) Zbl 1547.76017 Water Waves 6, No. 2, 225-277 (2024); correction ibid. 6, No. 2, 279-280 (2024). Reviewer: Denys Dutykh (Le Bourget-du-Lac) MSC: 76B15 76B25 76M30 76M10 × Cite Format Result Cite Review PDF Full Text: DOI
Hussain, A.; Usman, M.; Zaman, F. D.; Ibrahim, T. F.; Dawood, A. A. Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the Benney-Luke equation using optimal system of Lie subalgebras. (English) Zbl 1541.35379 Chin. J. Phys., Taipei 84, 66-88 (2023). MSC: 35Q35 76M60 17B81 35R03 35A24 35C08 35C05 35C07 × Cite Format Result Cite Review PDF Full Text: DOI
Elzaki, Tarig M.; Chamekh, Mourad; Ahmed, Shams A. Convergence and application of a modified double Laplace transform (MDLT) in some equations of mathematical physics. (English) Zbl 1538.35013 Adv. Differ. Equ. Control Process. 30, No. 2, 151-168 (2023). MSC: 35A22 35C05 × Cite Format Result Cite Review PDF Full Text: DOI
Durey, Matthew; Milewski, Paul A. Resonant triad interactions of gravity waves in cylindrical basins. (English) Zbl 1536.76019 J. Fluid Mech. 966, Paper No. A25, 30 p. (2023). Reviewer: Denys Dutykh (Le Bourget-du-Lac) MSC: 76B15 76M45 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Quintero, José R. On the exact controllability for the benney-luke equation in a bounded domain. (English) Zbl 1512.35484 Evol. Equ. Control Theory 12, No. 3, 823-845 (2023). MSC: 35Q35 93B05 93B07 93B60 × Cite Format Result Cite Review PDF Full Text: DOI
Veliyeva, Bahar K. A problem on determining the unknown coefficient and free term of a linearized Benny-Luke equation with not self-adjoint boundary conditions. (English) Zbl 1513.35549 J. Contemp. Appl. Math. 12, No. 2, 57-72 (2022). MSC: 35R30 35G16 × Cite Format Result Cite Review PDF Full Text: Link
Choi, J.; Bokhove, O.; Kalogirou, A.; Kelmanson, M. A. Numerical experiments on extreme waves through oblique-soliton interactions. (English) Zbl 1505.76014 Water Waves 4, No. 2, 139-179 (2022). MSC: 76B25 76B15 76M10 × Cite Format Result Cite Review PDF Full Text: DOI
Meng, Yanghan; Wang, Zhan Hydroelastic lumps in shallow water. (English) Zbl 1495.76022 Physica D 434, Article ID 133200, 14 p. (2022). MSC: 76B25 76M99 74F10 35Q51 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Yuldashev, Tursun K.; Rakhmonov, Farkhod D. On a boundary value problem for Benney-Luke type differential equation with nonlinear function of redefinition and integral conditions. (English) Zbl 1513.35013 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 41, No. 1, Math., 172-183 (2021). MSC: 35A02 35M10 35R30 × Cite Format Result Cite Review PDF Full Text: Link
Choi, Jin Hyuk; Kim, Hyunsoo; Sakthivel, R. Periodic and solitary wave solutions of some important physical models with variable coefficients. (English) Zbl 1495.76021 Waves Random Complex Media 31, No. 5, 891-910 (2021). MSC: 76B25 35Q51 35Q53 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI
Yuldashev, T. K.; Rakhmonov, F. D. On a Benney-Luke type differential equation with nonlinear boundary value conditions. (English) Zbl 1489.35029 Lobachevskii J. Math. 42, No. 15, 3761-3772 (2021). MSC: 35C20 35G16 × Cite Format Result Cite Review PDF Full Text: DOI
Gündoǧdu, Hami; Gözükizil, Ömer Faruk On the new type of solutions to Benney-Luke equation. (English) Zbl 1474.35178 Bol. Soc. Parana. Mat. (3) 39, No. 5, 103-111 (2021). MSC: 35C07 35C09 × Cite Format Result Cite Review PDF Full Text: Link
Yuldashev, T. K. Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney-Luke integro-differential equation with degenerate kernel. (English. Russian original) Zbl 1461.35246 J. Math. Sci., New York 254, No. 6, 793-807 (2021); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 156, 89-102 (2018). MSC: 35R30 35L35 35R09 × Cite Format Result Cite Review PDF Full Text: DOI
Yel, Gulnur; Baskonus, Haci Mehmet; Gao, Wei New dark-bright soliton in the shallow water wave model. (English) Zbl 1484.35342 AIMS Math. 5, No. 4, 4027-4044 (2020). MSC: 35Q53 35Q51 35C08 37K40 76B25 × Cite Format Result Cite Review PDF Full Text: DOI
Quintero, José R.; Montes, Alex M. On the exact controllability and the stabilization for the Benney-Luke equation. (English) Zbl 1440.74177 Math. Control Relat. Fields 10, No. 2, 275-304 (2020). MSC: 74J30 35Q74 35Q35 93B05 93D15 35Q53 × Cite Format Result Cite Review PDF Full Text: DOI
Ghanbari, Behzad; Inc, Mustafa; Yusuf, Abdullahi; Baleanu, Dumitru New solitary wave solutions and stability analysis of the Benney-Luke and the Phi-4 equations in mathematical physics. (English) Zbl 1486.35361 AIMS Math. 4, No. 6, 1523-1539 (2019). MSC: 35Q53 35C08 × Cite Format Result Cite Review PDF Full Text: DOI
Megraliev, Yashar Topush; Velieva, Bakhar Kamal Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions. (Russian. English summary) Zbl 1442.35548 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 29, No. 2, 166-182 (2019). MSC: 35R30 35G16 × Cite Format Result Cite Review PDF Full Text: DOI MNR
Mehraliyev, Yashar T.; Veliyeva, Bahar K.; Ramazanova, Aysel T. An inverse boundary value problem for a linearized Benney-Luke equation with nonlocal boundary conditions. (An inverse boundary value problem for a linearized Benny-Luc equation with nonlocal boundary conditions.) (English) Zbl 1438.35461 Cogent Math. Stat. 6, Article ID 1634316, 20 p. (2019). MSC: 35R30 35L20 35A35 35Q74 35J25 × Cite Format Result Cite Review PDF Full Text: DOI
Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen Dispersive analytical soliton solutions of some nonlinear waves dynamical models via modified mathematical methods. (English) Zbl 1448.35430 Adv. Difference Equ. 2018, Paper No. 334, 20 p. (2018). MSC: 35Q51 35C08 37K40 × Cite Format Result Cite Review PDF Full Text: DOI
Mhlanga, Isaiah Elvis; Khalique, Chaudry Masood A study of a generalized Benney-Luke equation with time-dependent coefficients. (English) Zbl 1380.35007 Nonlinear Dyn. 90, No. 3, 1535-1544 (2017). MSC: 35B06 37K10 × Cite Format Result Cite Review PDF Full Text: DOI
Mizumachi, Tetsu; Shimabukuro, Yusuke Asymptotic linear stability of benney-luke line solitary waves in 2D. (English) Zbl 1375.35034 Nonlinearity 30, No. 9, 3419-3465 (2017). MSC: 35B35 37K45 35Q35 35C08 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Islam, Md. Shafiqul; Khan, Kamruzzaman; Akbar, M. Ali Application of the improved \(F\)-expansion method with Riccati equation to find the exact solution of the nonlinear evolution equations. (English) Zbl 1357.35072 J. Egypt. Math. Soc. 25, No. 1, 13-18 (2017). MSC: 35C05 35L71 35Q35 × Cite Format Result Cite Review PDF Full Text: DOI
Yuldashev, T. K. Inverse problem for a nonlinear Benney-Luke type integro-differential equations with degenerate kernel. (English. Russian original) Zbl 1355.65185 Russ. Math. 60, No. 9, 53-60 (2016); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2016, No. 9, 59-67 (2016). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65R20 45K05 45Q05 65R32 × Cite Format Result Cite Review PDF Full Text: DOI
Quintero, José R.; Montoya, Octavio Existence and non existence of solitons for a 1D Benney-Luke model of higher order. (English) Zbl 1328.35178 Adv. Differ. Equ. 20, No. 11-12, 1187-1220 (2015). MSC: 35Q35 35B35 76B25 35C08 × Cite Format Result Cite Review PDF Full Text: Euclid
Stanislavova, Milena Linear stability of solitary waves for the one-dimensional Benney-Luke and Klein-Gordon equations. (English) Zbl 1309.35117 Stud. Appl. Math. 134, No. 1, 1-23 (2015). MSC: 35Q53 35Q35 35C07 35C08 35B35 × Cite Format Result Cite Review PDF Full Text: DOI
Mizumachi, Tetsu; Pego, Robert L.; Quintero, José Raúl Asymptotic stability of solitary waves in the Benney-Luke model of water waves. (English) Zbl 1289.37043 Differ. Integral Equ. 26, No. 3-4, 253-301 (2013). Reviewer: Marie Kopáčková (Praha) MSC: 37K40 35Q35 35B35 76B15 × Cite Format Result Cite Review PDF Full Text: arXiv
Ablowitz, Mark J.; Curtis, Christopher W. Conservation laws and non-decaying solutions for the Benney-Luke equation. (English) Zbl 1320.76018 Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 469, No. 2152, Article ID 20120690, 16 p. (2013). MSC: 76B15 35Q53 35A30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Quintero, José Raúl A remark on the Cauchy problem for the generalized Benney-Luke equation. (English) Zbl 1224.35263 Differ. Integral Equ. 21, No. 9-10, 859-890 (2008). MSC: 35L30 35L76 35Q35 76B15 × Cite Format Result Cite Review PDF
González N., A. The Cauchy problem for Benney-Luke and generalized Benney-Luke equations. (English) Zbl 1212.35315 Differ. Integral Equ. 20, No. 12, 1341-1362 (2007). MSC: 35L70 35B65 76B15 × Cite Format Result Cite Review PDF
Angulo, Jaime; Quintero, Jose R. Existence and orbital stability of cnoidal waves for a 1D Boussinesq equation. (English) Zbl 1146.35076 Int. J. Math. Math. Sci. 2007, Article ID 52020, 36 p. (2007). Reviewer: Dimitar A. Kolev (Sofia) MSC: 35Q53 37K10 37K45 × Cite Format Result Cite Review PDF Full Text: DOI EuDML
Berger, Kurt M.; Milewski, Paul A. Simulation of wave interactions and turbulence in one-dimensional water waves. (English) Zbl 1080.76013 SIAM J. Appl. Math. 63, No. 4, 1121-1140 (2003). Reviewer: Vasile Ionescu (Bucureşti) MSC: 76B15 76F55 × Cite Format Result Cite Review PDF Full Text: DOI