Alves, Fernando C.; Serrano-Rodríguez, Diana Marcela Complex Bohnenblust-Hille inequality whose monomials have indices in an arbitrary set. (English) Zbl 07200271 São Paulo J. Math. Sci. 14, No. 1, 242-248 (2020). MSC: 46G25 PDF BibTeX XML Cite \textit{F. C. Alves} and \textit{D. M. Serrano-Rodríguez}, São Paulo J. Math. Sci. 14, No. 1, 242--248 (2020; Zbl 07200271) Full Text: DOI
Cavalcante, Wasthenny V.; Pellegrino, Daniel M. Bohnenblust-Hille inequalities: analytical and computational aspects. (English) Zbl 07212611 An. Acad. Bras. Ciênc. 91, Suppl. 1, e20170398, 19 p. (2019). MSC: 46G25 46B20 PDF BibTeX XML Cite \textit{W. V. Cavalcante} and \textit{D. M. Pellegrino}, An. Acad. Bras. Ciênc. 91, e20170398, 19 p. (2019; Zbl 07212611) Full Text: DOI
Albuquerque, N.; Araújo, G.; Pellegrino, D.; Rueda, P. A note on multiple summing operators and applications. (English) Zbl 1421.46033 Linear Multilinear Algebra 67, No. 4, 660-671 (2019). Reviewer: Jamilson Ramos Campos (João Pessoa) MSC: 46G25 47H60 47J22 PDF BibTeX XML Cite \textit{N. Albuquerque} et al., Linear Multilinear Algebra 67, No. 4, 660--671 (2019; Zbl 1421.46033) Full Text: DOI
Serrano-Rodríguez, Diana M. A note on a paper of S. G. Kim. (English) Zbl 1418.46019 Extr. Math. 33, No. 2, 145-147 (2018). MSC: 46G25 30B50 PDF BibTeX XML Cite \textit{D. M. Serrano-Rodríguez}, Extr. Math. 33, No. 2, 145--147 (2018; Zbl 1418.46019)
Vieira Costa Júnior, Fernando The optimal multilinear Bohnenblust-Hille constants: a computational solution for the real case. (English) Zbl 1408.26024 Numer. Funct. Anal. Optim. 39, No. 15, 1656-1668 (2018). MSC: 26D20 46G25 PDF BibTeX XML Cite \textit{F. Vieira Costa Júnior}, Numer. Funct. Anal. Optim. 39, No. 15, 1656--1668 (2018; Zbl 1408.26024) Full Text: DOI
Kim, Sung Guen The geometry of \(\mathcal L (^3{{l}^2}_{\infty})\) and optimal constants in the Bohnenblust-Hille inequality for multilinear forms and polynomials. (English) Zbl 1414.46030 Extr. Math. 33, No. 1, 51-66 (2018). Reviewer: Richard M. Aron (Kent) MSC: 46G25 46B20 PDF BibTeX XML Cite \textit{S. G. Kim}, Extr. Math. 33, No. 1, 51--66 (2018; Zbl 1414.46030)
Nunes, Antonio Gomes A note on the Hardy-Littlewood inequalities for multilinear forms. (English) Zbl 1400.46041 Math. Inequal. Appl. 21, No. 2, 569-574 (2018). Reviewer: Daniel Pellegrino (João Pessoa) MSC: 46G25 47H60 PDF BibTeX XML Cite \textit{A. G. Nunes}, Math. Inequal. Appl. 21, No. 2, 569--574 (2018; Zbl 1400.46041) Full Text: DOI
Campos, Jamilson R.; Cavalcante, Wasthenny; Fávaro, Vinícius V.; Pellegrino, Daniel; Serrano-Rodríguez, Diana M. Polynomial and multilinear Hardy-Littlewood inequalities: analytical and numerical approaches. (English) Zbl 1405.46028 Math. Inequal. Appl. 21, No. 2, 329-344 (2018). Reviewer: Andreas Defant (Oldenburg) MSC: 46G25 47L22 47H60 PDF BibTeX XML Cite \textit{J. R. Campos} et al., Math. Inequal. Appl. 21, No. 2, 329--344 (2018; Zbl 1405.46028) Full Text: DOI
Pellegrino, Daniel; Teixeira, Eduardo V. Towards sharp Bohnenblust-Hille constants. (English) Zbl 1403.46037 Commun. Contemp. Math. 20, No. 3, Article ID 1750029, 33 p. (2018). Reviewer: Nacib Gurgel Albuquerque (João Pessoa) MSC: 46G25 46B70 PDF BibTeX XML Cite \textit{D. Pellegrino} and \textit{E. V. Teixeira}, Commun. Contemp. Math. 20, No. 3, Article ID 1750029, 33 p. (2018; Zbl 1403.46037) Full Text: DOI arXiv
Nogueira, Tony; Rueda, Pilar Summability of multilinear forms on classical sequence spaces. (English) Zbl 07117221 Quaest. Math. 40, No. 6, 803-809 (2017). MSC: 47A63 47H60 PDF BibTeX XML Cite \textit{T. Nogueira} and \textit{P. Rueda}, Quaest. Math. 40, No. 6, 803--809 (2017; Zbl 07117221) Full Text: DOI arXiv
Albuquerque, N.; Araújo, G.; Pellegrino, D.; Seoane-Sepúlveda, J. B. Hölder’s inequality: some recent and unexpected applications. (English) Zbl 06850667 Bull. Belg. Math. Soc. - Simon Stevin 24, No. 2, 199-225 (2017). MSC: 47A63 30B50 46G25 46B70 47H60 PDF BibTeX XML Cite \textit{N. Albuquerque} et al., Bull. Belg. Math. Soc. - Simon Stevin 24, No. 2, 199--225 (2017; Zbl 06850667) Full Text: Euclid
Albuquerque, N.; Nogueira, T.; Núñez-Alarcón, Daniel; Pellegrino, D.; Rueda, Pilar Some applications of the Hölder inequality for mixed sums. (English) Zbl 06816318 Positivity 21, No. 4, 1575-1592 (2017). MSC: 47L22 47H60 PDF BibTeX XML Cite \textit{N. Albuquerque} et al., Positivity 21, No. 4, 1575--1592 (2017; Zbl 06816318) Full Text: DOI
Caro, Nicolás; Núñez-Alarcón, Daniel; Serrano-Rodríguez, Diana Marcela On the generalized Bohnenblust-Hille inequality for real scalars. (English) Zbl 06816310 Positivity 21, No. 4, 1439-1455 (2017). MSC: 47B10 32A22 47H60 PDF BibTeX XML Cite \textit{N. Caro} et al., Positivity 21, No. 4, 1439--1455 (2017; Zbl 06816310) Full Text: DOI
Nogueira, Tony; Núñez-Alarcón, Daniel; Pellegrino, Daniel Optimal constants for a mixed Littlewood type inequality. (English) Zbl 1418.11161 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 4, 1083-1092 (2017). MSC: 11Y60 46G25 PDF BibTeX XML Cite \textit{T. Nogueira} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 4, 1083--1092 (2017; Zbl 1418.11161) Full Text: DOI
Santos, J.; Velanga, T. On the Bohnenblust-Hille inequality for multilinear forms. (English) Zbl 06785696 Result. Math. 72, No. 1-2, 239-244 (2017). MSC: 47A63 47A07 PDF BibTeX XML Cite \textit{J. Santos} and \textit{T. Velanga}, Result. Math. 72, No. 1--2, 239--244 (2017; Zbl 06785696) Full Text: DOI
Araújo, Gustavo; Pellegrino, Daniel On the constants of the Bohnenblust-Hille and Hardy-Littlewood inequalities. (English) Zbl 06767894 Bull. Braz. Math. Soc. (N.S.) 48, No. 1, 141-169 (2017). MSC: 47H60 47A63 11Y60 PDF BibTeX XML Cite \textit{G. Araújo} and \textit{D. Pellegrino}, Bull. Braz. Math. Soc. (N.S.) 48, No. 1, 141--169 (2017; Zbl 06767894) Full Text: DOI
Maia, Mariana; Nogueira, Tony; Pellegrino, Daniel The Bohnenblust-Hille inequality for polynomials whose monomials have a uniformly bounded number of variables. (English) Zbl 1378.32001 Integral Equations Oper. Theory 88, No. 1, 143-149 (2017). Reviewer: Christopher Boyd (Dublin) MSC: 32A05 46G25 PDF BibTeX XML Cite \textit{M. Maia} et al., Integral Equations Oper. Theory 88, No. 1, 143--149 (2017; Zbl 1378.32001) Full Text: DOI
Araújo, Gustavo; Jiménez-Rodríguez, P.; Muñoz-Fernández, Gustavo A.; Seoane-Sepúlveda, Juan B. Equivalent norms in polynomial spaces and applications. (English) Zbl 1357.46036 J. Math. Anal. Appl. 445, No. 2, 1200-1220 (2017). Reviewer: Daniel Pellegrino (João Pessoa) MSC: 46G25 PDF BibTeX XML Cite \textit{G. Araújo} et al., J. Math. Anal. Appl. 445, No. 2, 1200--1220 (2017; Zbl 1357.46036) Full Text: DOI
Cavalcante, W.; Núñez-Alarcón, Daniel; Pellegrino, D. New lower bounds for the constants in the real polynomial Hardy-Littlewood inequality. (English) Zbl 1352.32007 Numer. Funct. Anal. Optim. 37, No. 8, 927-937 (2016). MSC: 32H99 26C05 PDF BibTeX XML Cite \textit{W. Cavalcante} et al., Numer. Funct. Anal. Optim. 37, No. 8, 927--937 (2016; Zbl 1352.32007) Full Text: DOI
Defant, Andreas; Mastyło, Mieczysław Bohnenblust-Hille inequalities for Lorentz spaces via interpolation. (English) Zbl 1357.46037 Anal. PDE 9, No. 5, 1235-1258 (2016). Reviewer: Daniel Pellegrino (João Pessoa) MSC: 46G25 46B70 PDF BibTeX XML Cite \textit{A. Defant} and \textit{M. Mastyło}, Anal. PDE 9, No. 5, 1235--1258 (2016; Zbl 1357.46037) Full Text: DOI arXiv
Carando, Daniel; Defant, Andreas; Sevilla-Peris, Pablo The Bohnenblust-Hille inequality combined with an inequality of Helson. (English) Zbl 1329.32001 Proc. Am. Math. Soc. 143, No. 12, 5233-5238 (2015). Reviewer: Christopher Boyd (Dublin) MSC: 32A05 46G25 30C10 PDF BibTeX XML Cite \textit{D. Carando} et al., Proc. Am. Math. Soc. 143, No. 12, 5233--5238 (2015; Zbl 1329.32001) Full Text: DOI arXiv
Araújo, Gustavo; Pellegrino, Daniel Optimal Hardy-Littlewood type inequalities for \(m\)-linear forms on \(\ell_{p}\) spaces with \({1\leq p\leq m}\). (English) Zbl 1432.32003 Arch. Math. 105, No. 3, 285-295 (2015). MSC: 32A22 47H60 46G25 PDF BibTeX XML Cite \textit{G. Araújo} and \textit{D. Pellegrino}, Arch. Math. 105, No. 3, 285--295 (2015; Zbl 1432.32003) Full Text: DOI arXiv
Albuquerque, Nacib; Núñez-Alarcón, Daniel; Serrano-Rodríguez, Diana Marcela A subexponential vector-valued Bohnenblust-Hille type inequality. (English) Zbl 1323.26023 J. Math. Anal. Appl. 432, No. 1, 314-323 (2015). MSC: 26D15 32A05 46B07 46B09 PDF BibTeX XML Cite \textit{N. Albuquerque} et al., J. Math. Anal. Appl. 432, No. 1, 314--323 (2015; Zbl 1323.26023) Full Text: DOI
Albuquerque, Nacib; Núñez-Alarcón, Daniel; Santos, Joedson; Serrano-Rodríguez, Diana Marcela Absolutely summing multilinear operators via interpolation. (English) Zbl 1331.46036 J. Funct. Anal. 269, No. 6, 1636-1651 (2015). Reviewer: Jamilson Ramos Campos (João Pessoa) MSC: 46G25 47L22 47H60 PDF BibTeX XML Cite \textit{N. Albuquerque} et al., J. Funct. Anal. 269, No. 6, 1636--1651 (2015; Zbl 1331.46036) Full Text: DOI
Araújo, Gustavo; Pellegrino, Daniel Lower bounds for the complex polynomial Hardy-Littlewood inequality. (English) Zbl 1327.46045 Linear Algebra Appl. 474, 184-191 (2015). Reviewer: Jamilson Ramos Campos (João Pessoa) MSC: 46G25 PDF BibTeX XML Cite \textit{G. Araújo} and \textit{D. Pellegrino}, Linear Algebra Appl. 474, 184--191 (2015; Zbl 1327.46045) Full Text: DOI arXiv
Araújo, G.; Jiménez-Rodriguez, P.; Muñoz-Fernández, G. A.; Núñez-Alarcón, D.; Pellegrino, D.; Seoane-Sepúlveda, J. B.; Serrano-Rodríguez, D. M. On the polynomial Hardy-Littlewood inequality. (English) Zbl 1312.47074 Arch. Math. 104, No. 3, 259-270 (2015). Reviewer: Mohammad Sal Moslehian (Karlstad) MSC: 47H60 47A63 46G25 PDF BibTeX XML Cite \textit{G. Araújo} et al., Arch. Math. 104, No. 3, 259--270 (2015; Zbl 1312.47074) Full Text: DOI
Campos, J. R.; Jiménez-Rodríguez, P.; Muñoz-Fernández, G. A.; Pellegrino, D.; Seoane-Sepúlveda, J. B. On the real polynomial Bohnenblust-Hille inequality. (English) Zbl 1318.46029 Linear Algebra Appl. 465, 391-400 (2015). Reviewer: Christopher Boyd (Dublin) MSC: 46G25 47L22 47H60 PDF BibTeX XML Cite \textit{J. R. Campos} et al., Linear Algebra Appl. 465, 391--400 (2015; Zbl 1318.46029) Full Text: DOI arXiv
Araújo, Gustavo; Pellegrino, Daniel Lower bounds for the constants of the Hardy-Littlewood inequalities. (English) Zbl 1321.46047 Linear Algebra Appl. 463, 10-15 (2014). Reviewer: Nacib Gurgel Albuquerque (João Pessoa) MSC: 46G25 11J13 30C10 PDF BibTeX XML Cite \textit{G. Araújo} and \textit{D. Pellegrino}, Linear Algebra Appl. 463, 10--15 (2014; Zbl 1321.46047) Full Text: DOI arXiv
Bayart, Frédéric; Pellegrino, Daniel; Seoane-Sepúlveda, Juan B. The Bohr radius of the \(n\)-dimensional polydisk is equivalent to \(\sqrt{(\log n) / n}\). (English) Zbl 1331.46037 Adv. Math. 264, 726-746 (2014). Reviewer: Daniel Núñez Alarcón (João Pessoa) MSC: 46G25 PDF BibTeX XML Cite \textit{F. Bayart} et al., Adv. Math. 264, 726--746 (2014; Zbl 1331.46037) Full Text: DOI
Araújo, Gustavo; Pellegrino, Daniel; da Silva e Silva, Diogo Diniz P. On the upper bounds for the constants of the Hardy-Littlewood inequality. (English) Zbl 1298.26066 J. Funct. Anal. 267, No. 6, 1878-1888 (2014). MSC: 26D15 PDF BibTeX XML Cite \textit{G. Araújo} et al., J. Funct. Anal. 267, No. 6, 1878--1888 (2014; Zbl 1298.26066) Full Text: DOI arXiv
Defant, Andreas; Sevilla-Peris, Pablo The Bohnenblust-Hille cycle of ideas from a modern point of view. (English) Zbl 1294.30009 Funct. Approximatio, Comment. Math. 50, No. 1, 55-127 (2014). MSC: 30B50 46G25 46E50 PDF BibTeX XML Cite \textit{A. Defant} and \textit{P. Sevilla-Peris}, Funct. Approximatio, Comment. Math. 50, No. 1, 55--127 (2014; Zbl 1294.30009) Full Text: DOI Euclid
Albuquerque, N.; Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B. Sharp generalizations of the multilinear Bohnenblust-Hille inequality. (English) Zbl 1319.46035 J. Funct. Anal. 266, No. 6, 3726-3740 (2014). Reviewer: Jamilson Ramos Campos (João Pessoa) MSC: 46G25 47L22 47B10 PDF BibTeX XML Cite \textit{N. Albuquerque} et al., J. Funct. Anal. 266, No. 6, 3726--3740 (2014; Zbl 1319.46035) Full Text: DOI arXiv
Diniz, D.; Muñoz-Fernández, G. A.; Pellegrino, D.; Seoane-Sepúlveda, J. B. Lower bounds for the constants in the Bohnenblust-Hille inequality: the case of real scalars. (English) Zbl 1291.46040 Proc. Am. Math. Soc. 142, No. 2, 575-580 (2014). Reviewer: Daniel Núñez Alarcón (João Pessoa) MSC: 46G25 47H60 PDF BibTeX XML Cite \textit{D. Diniz} et al., Proc. Am. Math. Soc. 142, No. 2, 575--580 (2014; Zbl 1291.46040) Full Text: DOI
Núñez-Alarcón, D. A note on the polynomial Bohnenblust-Hille inequality. (English) Zbl 1319.46036 J. Math. Anal. Appl. 407, No. 1, 179-181 (2013). Reviewer: Christopher Boyd (Dublin) MSC: 46G25 47L22 47H60 PDF BibTeX XML Cite \textit{D. Núñez-Alarcón}, J. Math. Anal. Appl. 407, No. 1, 179--181 (2013; Zbl 1319.46036) Full Text: DOI
Núñez-Alarcón, Daniel On the growth of the optimal constants of the multilinear Bohnenblust-Hille inequality. (English) Zbl 1286.46047 Linear Algebra Appl. 439, No. 8, 2494-2499 (2013). Reviewer: Daniel Pellegrino (João Pessoa) MSC: 46G25 47H60 PDF BibTeX XML Cite \textit{D. Núñez-Alarcón}, Linear Algebra Appl. 439, No. 8, 2494--2499 (2013; Zbl 1286.46047) Full Text: DOI
Popa, Dumitru; Sinnamon, Gord Blei’s inequality and coordinatewise multiple summing operators. (English) Zbl 1286.26017 Publ. Mat., Barc. 57, No. 2, 455-475 (2013). MSC: 26D15 47B10 47H60 PDF BibTeX XML Cite \textit{D. Popa} and \textit{G. Sinnamon}, Publ. Mat., Barc. 57, No. 2, 455--475 (2013; Zbl 1286.26017) Full Text: DOI Euclid
Serrano-Rodríguez, Diana Marcela Improving the closed formula for subpolynomial constants in the multilinear Bohnenblust-Hille inequalities. (English) Zbl 1270.46040 Linear Algebra Appl. 438, No. 7, 3124-3138 (2013). Reviewer: Daniel Pellegrino (João Pessoa) MSC: 46G25 47L22 47H60 PDF BibTeX XML Cite \textit{D. M. Serrano-Rodríguez}, Linear Algebra Appl. 438, No. 7, 3124--3138 (2013; Zbl 1270.46040) Full Text: DOI
Nuñez-Alarcón, D.; Pellegrino, D.; Seoane-Sepúlveda, J. B. On the Bohnenblust-Hille inequality and a variant of Littlewood’s 4/3 inequality. (English) Zbl 1264.46032 J. Funct. Anal. 264, No. 1, 326-336 (2013). Reviewer: Christopher Boyd (Dublin) MSC: 46G25 PDF BibTeX XML Cite \textit{D. Nuñez-Alarcón} et al., J. Funct. Anal. 264, No. 1, 326--336 (2013; Zbl 1264.46032) Full Text: DOI arXiv
Nuñez-Alarcón, D.; Pellegrino, D.; Seoane-Sepúlveda, J. B.; Serrano-Rodríguez, D. M. There exist multilinear Bohnenblust-Hille constants \((C_n)^\infty_{n=1}\) with \(\lim_{n\to \infty}(C_{n+1} -C_n)=0\). (English) Zbl 1264.46033 J. Funct. Anal. 264, No. 2, 429-463 (2013). Reviewer: Christopher Boyd (Dublin) MSC: 46G25 32A07 PDF BibTeX XML Cite \textit{D. Nuñez-Alarcón} et al., J. Funct. Anal. 264, No. 2, 429--463 (2013; Zbl 1264.46033) Full Text: DOI arXiv
Diniz, D.; Muñoz-Fernández, G. A.; Pellegrino, D.; Seoane-Sepúlveda, J. B. The asymptotic growth of the constants in the Bohnenblust-Hille inequality is optimal. (English) Zbl 1252.46034 J. Funct. Anal. 263, No. 2, 415-428 (2012). Reviewer: Christopher Boyd (Dublin) MSC: 46G25 46B07 PDF BibTeX XML Cite \textit{D. Diniz} et al., J. Funct. Anal. 263, No. 2, 415--428 (2012; Zbl 1252.46034) Full Text: DOI
Muñoz-Fernández, G. A.; Pellegrino, D.; Seoane-Sepúlveda, J. B. Estimates for the asymptotic behaviour of the constants in the Bohnenblust-Hille inequality. (English) Zbl 1252.46035 Linear Multilinear Algebra 60, No. 5, 573-582 (2012). Reviewer: Christopher Boyd (Dublin) MSC: 46G25 47L22 47H60 46B07 PDF BibTeX XML Cite \textit{G. A. Muñoz-Fernández} et al., Linear Multilinear Algebra 60, No. 5, 573--582 (2012; Zbl 1252.46035) Full Text: DOI
Blasco, Oscar; Botelho, Geraldo; Pellegrino, Daniel; Rueda, Pilar Summability of multilinear mappings: Littlewood, Orlicz and beyond. (English) Zbl 1246.46045 Monatsh. Math. 163, No. 2, 131-147 (2011). Reviewer: Hans-Andreas Braunß (Potsdam) MSC: 46G25 47B10 47L22 PDF BibTeX XML Cite \textit{O. Blasco} et al., Monatsh. Math. 163, No. 2, 131--147 (2011; Zbl 1246.46045) Full Text: DOI arXiv
Defant, Andreas; Popa, Dumitru; Schwarting, Ursula Coordinatewise multiple summing operators in Banach spaces. (English) Zbl 1205.46026 J. Funct. Anal. 259, No. 1, 220-242 (2010). Reviewer: Daniel Pellegrino (João Pessoa) MSC: 46G25 47L22 PDF BibTeX XML Cite \textit{A. Defant} et al., J. Funct. Anal. 259, No. 1, 220--242 (2010; Zbl 1205.46026) Full Text: DOI