×

Acceleration for microflow simulations of high-order moment models by using lower-order model correction. (English) Zbl 1373.82035

Summary: We study the acceleration of steady-state computation for microflow, which is modeled by the high-order moment models derived recently from the steady-state Boltzmann equation with BGK-type collision term. By using the lower-order model correction, a novel nonlinear multi-level moment solver is developed. Numerical examples verify that the resulting solver improves the convergence significantly thus is able to accelerate the steady-state computation greatly. The behavior of the solver is also numerically investigated. It is shown that the convergence rate increases, indicating the solver would be more efficient, as the total levels increases. Three order reduction strategies of the solver are considered. Numerical results show that the most efficient order reduction strategy would be \(m_{l - 1} = \lceil m_l / 2 \rceil\).

MSC:

82B40 Kinetic theory of gases in equilibrium statistical mechanics
82B80 Numerical methods in equilibrium statistical mechanics (MSC2010)

Software:

pySDC
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases, I: small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511-525 (1954) · Zbl 0055.23609
[2] Brandt, A.; Livne, O. E., Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Classics in Applied Mathematics (2011), SIAM · Zbl 1227.65121
[3] Cai, Z.; Fan, Y.; Li, R., Globally hyperbolic regularization of Grad’s moment system in one dimensional space, Commun. Math. Sci., 11, 2, 547-571 (2013) · Zbl 1301.35083
[4] Cai, Z.; Fan, Y.; Li, R., Globally hyperbolic regularization of Grad’s moment system, Commun. Pure Appl. Math., 67, 3, 464-518 (2014) · Zbl 1307.35182
[5] Cai, Z.; Fan, Y.; Li, R., A framework on moment model reduction for kinetic equation, SIAM J. Appl. Math., 75, 5, 2001-2023 (2015) · Zbl 1323.76098
[6] Cai, Z.; Li, R., Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation, SIAM J. Sci. Comput., 32, 5, 2875-2907 (2010) · Zbl 1417.82026
[7] Cai, Z.; Li, R.; Qiao, Z., NRxx simulation of microflows with Shakhov model, SIAM J. Sci. Comput., 34, 1, A339-A369 (2012) · Zbl 1241.82064
[8] Cai, Z.; Li, R.; Qiao, Z., Globally hyperbolic regularized moment method with applications to microflow simulation, Comput. Fluids, 81, 95-109 (2013) · Zbl 1285.76022
[9] Cai, Z.; Li, R.; Wang, Y., An efficient NRxx method for Boltzmann-BGK equation, J. Sci. Comput., 50, 1, 103-119 (2012) · Zbl 1427.76199
[10] Cai, Z.; Li, R.; Wang, Y., Numerical regularized moment method for high Mach number flow, Commun. Comput. Phys., 11, 5, 1415-1438 (2012) · Zbl 1373.76296
[11] Cai, Z.; Li, R.; Wang, Y., Solving Vlasov equation using NRxx method, SIAM J. Sci. Comput., 35, 6, A2807-A2831 (2013) · Zbl 1287.35090
[12] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-uniform Gases (1990), Cambridge University Press · Zbl 0098.39702
[13] Fidkowski, K. J.; Oliver, T. A.; Lu, J.; Darmofal, D. L., \(p\)-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations, J. Comput. Phys., 207, 1, 92-113 (2005) · Zbl 1177.76194
[14] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 4, 331-407 (1949) · Zbl 0037.13104
[15] Hackbusch, W., Multi-Grid Methods and Applications (1985), Springer-Verlag: Springer-Verlag Berlin, second printing 2003 · Zbl 0585.65030
[16] Helenbrook, B. T.; Atkins, H. L., Solving discontinuous Galerkin formulations of Poisson’s equation using geometric and \(p\) multigrid, AIAA J., 46, 4, 894-902 (2008)
[17] Holway, L. H., New statistical models for kinetic theory: methods of construction, Phys. Fluids, 9, 1, 1658-1673 (1966)
[18] Hu, G. H.; Li, R.; Tang, T., A robust high-order residual distribution type scheme for steady Euler equations on unstructured grids, J. Comput. Phys., 229, 1681-1697 (2010) · Zbl 1329.76261
[19] Hu, Z.; Li, R., A nonlinear multigrid steady-state solver for 1D microflow, Comput. Fluids, 103, 193-203 (2014) · Zbl 1391.76679
[20] Hu, Z.; Li, R.; Lu, T.; Wang, Y.; Yao, W., Simulation of an \(n^+-n-n^+\) diode by using globally-hyperbolically-closed high-order moment models, J. Sci. Comput., 59, 3, 761-774 (2014) · Zbl 1303.82032
[21] Hu, Z.; Li, R.; Qiao, Z., Extended hydrodynamic models and multigrid solver of a silicon diode simulation, Commun. Comput. Phys., 20, 3, 551-582 (2016) · Zbl 1373.82009
[22] Kannan, R., An implicit LU-SGS spectral volume method for the moment models in device simulations: formulation in 1D and application to a p-multigrid algorithm, Int. J. Numer. Methods Biomed. Eng., 27, 1362-1375 (2011) · Zbl 1252.82112
[23] Li, R.; Wang, X.; Zhao, W.-B., A multigrid block LU-SGS algorithm for Euler equations on unstructured grids, Numer. Math., Theory Methods Appl., 1, 1, 92-112 (2008) · Zbl 1174.76313
[24] Luo, H.; Baum, J. D.; Löhner, R., Fast \(p\)-multigrid discontinuous Galerkin method for compressible flows at all speeds, AIAA J., 46, 3, 635-652 (2008)
[25] Maday, Y.; Muñoz, R., Spectral element multigrid, II: theoretical justification, J. Sci. Comput., 3, 4, 323-353 (1988) · Zbl 0695.65058
[26] Mascarenhas, B. S.; Helenbrook, B. T.; Atkins, H. L., Coupling \(p\)-multigrid to geometric multigrid for discontinuous Galerkin formulations of the convection-diffusion equation, J. Comput. Phys., 229, 10, 3664-3674 (2010) · Zbl 1190.65113
[27] Mavriplis, D. J., An assessment of linear versus nonlinear multigrid methods for unstructured mesh solvers, J. Comput. Phys., 175, 302-325 (2002) · Zbl 0995.65099
[28] Mieussens, L.; Struchtrup, H., Numerical comparison of Bhatnagar-Gross-Krook models with proper Prandtl number, Phys. Fluids, 16, 8, 2797-2813 (2004) · Zbl 1186.76372
[29] Rønquist, E. M.; Patera, A. T., Spectral element multigrid, I: formulation and numerical results, J. Sci. Comput., 2, 4, 389-406 (1987) · Zbl 0666.65055
[30] Shakhov, E. M., Generalization of the Krook kinetic relaxation equation, Fluid Dyn., 3, 5, 95-96 (1968)
[31] Speck, R.; Ruprecht, D.; Emmett, M.; Minion, M.; Bolten, M.; Krause, R., A multi-level spectral deferred correction method, BIT Numer. Math., 55, 843-867 (2015) · Zbl 1326.65138
[32] Struchtrup, H., Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory (2005), Springer · Zbl 1119.76002
[33] Wallraff, M.; Hartmann, R.; Leicht, T., Multigrid solver algorithms for DG methods and applications to aerodynamic flows, (Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach. IDIHOM: Industrialization of High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128 (2015), Springer International Publishing), 153-178
[34] Xu, K.; Liu, H.; Jiang, J., Multiple-temperature model for continuum and near continuum flows, Phys. Fluids, 19, 1, Article 016101 pp. (2007) · Zbl 1146.76566
[35] Zheng, Y.; Garcia, A. L.; Alder, B. J., Comparison of kinetic theory and hydrodynamics for Poiseuille flow, J. Stat. Phys., 109, 3-4, 495-505 (2002) · Zbl 1101.82336
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.