Chadli, Ouayl; Gwinner, Joachim; Nashed, M. Zuhair Noncoercive variational-hemivariational inequalities: existence, approximation by double regularization, and application to nonmonotone contact problems. (English) Zbl 1489.49009 J. Optim. Theory Appl. 193, No. 1-3, 42-65 (2022). MSC: 49J40 49J27 35J87 74M10 PDF BibTeX XML Cite \textit{O. Chadli} et al., J. Optim. Theory Appl. 193, No. 1--3, 42--65 (2022; Zbl 1489.49009) Full Text: DOI
Liu, Yongjian; Liu, Zhenhai; Motreanu, Dumitru Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. (English) Zbl 1455.35116 Math. Methods Appl. Sci. 43, No. 17, 9543-9556 (2020). MSC: 35J87 35R11 49J52 PDF BibTeX XML Cite \textit{Y. Liu} et al., Math. Methods Appl. Sci. 43, No. 17, 9543--9556 (2020; Zbl 1455.35116) Full Text: DOI
Huong, Tran Thi; Kim, Jong Kyu; Thuy, Nguyen Thi Thu Regularization for the problem of finding a solution of a system of nonlinear monotone ill-posed equations in Banach spaces. (English) Zbl 06914894 J. Korean Math. Soc. 55, No. 4, 849-875 (2018). MSC: 47H17 47H20 PDF BibTeX XML Cite \textit{T. T. Huong} et al., J. Korean Math. Soc. 55, No. 4, 849--875 (2018; Zbl 06914894) Full Text: Link
Nguyen Buong; Tran Thi Huong; Nguyen Thi Thu Thuy A quasi-residual principle in regularization for a common solution of a system of nonlinear monotone ill-posed equations. (English) Zbl 1350.65054 Russ. Math. 60, No. 3, 47-55 (2016). Reviewer: Vasilis Dimitriou (Chania) MSC: 65J15 65J20 47J06 PDF BibTeX XML Cite \textit{Nguyen Buong} et al., Russ. Math. 60, No. 3, 47--55 (2016; Zbl 1350.65054) Full Text: DOI
Xiao, Yibin; Tang, Guoji; Long, Xianjun; Huang, Nanjing Convergence analysis on Browder-Tikhonov regularization for second-order evolution hemivariational inequality. (English) Zbl 1326.47021 AMM, Appl. Math. Mech., Engl. Ed. 36, No. 10, 1371-1382 (2015). MSC: 47B20 34G25 PDF BibTeX XML Cite \textit{Y. Xiao} et al., AMM, Appl. Math. Mech., Engl. Ed. 36, No. 10, 1371--1382 (2015; Zbl 1326.47021) Full Text: DOI
Nguyen, Buong; Nguyen Thi Thu, Thuy; Tran Thi, Hong A generalized quasi-residual principle in regularization for a solution of a finite system of ill-posed equations in Banach spaces. (English) Zbl 1321.47127 Nonlinear Funct. Anal. Appl. 20, No. 2, 187-197 (2015). MSC: 47J06 PDF BibTeX XML Cite \textit{B. Nguyen} et al., Nonlinear Funct. Anal. Appl. 20, No. 2, 187--197 (2015; Zbl 1321.47127)
Nguyen Buong; Nguyen Duong Nguyen; Nguyen Thi Thu Thuy Newton-Kantorovich iterative regularization and generalized discrepancy principle for nonlinear ill-posed equations involving accretive mappings. (English. Russian original) Zbl 1319.47048 Russ. Math. 59, No. 5, 32-37 (2015); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2015, No. 5, 38-44 (2015). MSC: 47J06 47H06 65J20 PDF BibTeX XML Cite \textit{Nguyen Buong} et al., Russ. Math. 59, No. 5, 32--37 (2015; Zbl 1319.47048); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2015, No. 5, 38--44 (2015) Full Text: DOI
Kim, Jong Kyu; Buong, Nguyen Convergence rates in regularization for a system of nonlinear ill-posed equations with \(m\)-accretive operators. (English) Zbl 1370.47057 J. Inequal. Appl. 2014, Paper No. 440, 9 p. (2014). MSC: 47J06 47H06 PDF BibTeX XML Cite \textit{J. K. Kim} and \textit{N. Buong}, J. Inequal. Appl. 2014, Paper No. 440, 9 p. (2014; Zbl 1370.47057) Full Text: DOI
Buong, Nguyen; Hong Phuong, Nguyen Thi Regularization methods for a class of variational inequalities in Banach spaces. (Russian, English) Zbl 1274.49017 Zh. Vychisl. Mat. Mat. Fiz. 52, No. 11, 1951-1952 (2012); translation in Comput. Math. Math. Phys. 52, No. 11, 1487-1497 (2012). MSC: 49J40 PDF BibTeX XML Cite \textit{N. Buong} and \textit{N. T. Hong Phuong}, Zh. Vychisl. Mat. Mat. Fiz. 52, No. 11, 1951--1952 (2012; Zbl 1274.49017); translation in Comput. Math. Math. Phys. 52, No. 11, 1487--1497 (2012) Full Text: DOI
Liu, Zhenhai Browder-Tikhonov regularization of non-coercive evolution hemivariational inequalities. (English) Zbl 1078.49006 Inverse Probl. 21, No. 1, 13-20 (2005). MSC: 49J40 49M30 65J20 47J20 35J85 PDF BibTeX XML Cite \textit{Z. Liu}, Inverse Probl. 21, No. 1, 13--20 (2005; Zbl 1078.49006) Full Text: DOI
Giannessi, F.; Khan, A. A. Regularization of non-coercive quasi variational inequalities. (English) Zbl 1006.49004 Control Cybern. 29, No. 1, 91-110 (2000). MSC: 49J40 47J20 65J20 PDF BibTeX XML Cite \textit{F. Giannessi} and \textit{A. A. Khan}, Control Cybern. 29, No. 1, 91--110 (2000; Zbl 1006.49004)
Kokurin, M. Yu. On the use of regularization to correct monotone variational inequalities given approximately. (English. Russian original) Zbl 0811.47068 Russ. Math. 36, No. 2, 49-56 (1992); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1992, No. 2(357), 49-56 (1992). Reviewer: P.Zabreiko (Minsk) MSC: 47J20 47J25 35J20 PDF BibTeX XML Cite \textit{M. Yu. Kokurin}, Russ. Math. 36, No. 2, 1 (1992; Zbl 0811.47068); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1992, No. 2(357), 49--56 (1992)